Sign in to edit your profile (add interests, mentoring, photo, etc.)
    Keywords
    Last Name
    Institution

    Stephen J Doxsey PhD

    TitleProfessor
    InstitutionUniversity of Massachusetts Medical School
    DepartmentProgram in Molecular Medicine
    AddressUniversity of Massachusetts Medical School
    373 Plantation Street
    Worcester MA 01605
    Phone508-856-1613
      Other Positions
      InstitutionUMMS - School of Medicine
      DepartmentBiochemistry and Molecular Pharmacology

      InstitutionUMMS - School of Medicine
      DepartmentCell and Developmental Biology

      InstitutionUMMS - Graduate School of Biomedical Sciences
      DepartmentBiochemistry and Molecular Pharmacology

      InstitutionUMMS - Graduate School of Biomedical Sciences
      DepartmentCancer Biology

      InstitutionUMMS - Graduate School of Biomedical Sciences
      DepartmentCell Biology

      InstitutionUMMS - Graduate School of Biomedical Sciences
      DepartmentInterdisciplinary Graduate Program

      InstitutionUMMS - Graduate School of Biomedical Sciences
      DepartmentMD/PhD Program

      InstitutionUMMS - Graduate School of Biomedical Sciences
      DepartmentTranslational Science

      InstitutionUMMS - Programs, Centers and Institutes
      DepartmentProgram in Cell Dynamics

        Overview 
        Narrative

        Academic Background

        Stephen Doxsey received his BS from the University of Connecticut in 1977 and his PhD in Cell Biology from Yale University in 1987. He was awarded Anna Fuller and Damon Runyon Fellowships during his postdoctoral training in Dr. Marc Kirschner's laboratory at the University of California at San Francisco. Dr. Doxsey joined the faculty at the University of Massachusetts Medical School in the Program in Molecular Medicine in 1993.

        Regulation of Mitotic Spindle Assembly

        Steve DoxseyMicrotubules are required for such fundamental cellular processes as cell division, embryogenesis, cell motility and organelle translocation. In all animal cells, the microtubule cytoskeleton arises from the centrosome, an organelle with the ability to nucleate microtubules.

        This laboratory is interested in understanding how the centrosome organizes microtubule arrays such as the mitotic spindle. We have cloned and characterized pericentrin, a highly conserved centrosome protein essential for cell division and microtubule organization. Pericentrin forms a large complex with gamma tubulin and other proteins involved in microtubule nucleation. Expression of mutated forms of pericentrin in cells induces the formation of 'ectopic centrosomes' that nucleate microtubules. Current work involves expression of chimeras of pericentrin and green fluorescent protein to monitor centrosome dynamics and function in living cells. In collaboration with the Biomedical Imaging Group, who developed new superresolution immunofluorescence technology, we discovered that centrosomes are comprised of a novel lattice structure (see Figure A). The mechanism and regulation of centrosome assembly is being investigated using in vitro reconstitution systems and in vivo systems developed in our laboratory. Centrosome assembly in mammalian cells is microtubule-dependent and mediated by the molecular motor, dynein. We are characterizing other highly conserved, novel centrosome proteins identified with serum from patients with the autoimmune disease, scleroderma. Finally, we recently discovered that pericentrin is overexpressed in tumors and that tumor cells have abnormal centrosomes, suggesting a possible role of pericentrin in tumorigenesis.

        Figure

        Research Figure A.


        A. Immunofluorescence image of microtubules (red) grown from a centrosome (yellow). The centrosome was stained with antibodies to pericentrin, a highly conserved and essential centrosome protein. The novel centrosome lattice revealed in this image was discovered using imaging technology recently developed by Dr. Fred Fay and coworkers here at UMass.



        Rotation Projects

        Potential Rotation Projects:

        Project #1: Centrosomes, chromosome segregation and cancer. We have shown that the assembly of centrosomes is essential for spindle function (Zimmerman et al., 1999, 2000; Doxsey, 2001). We recently discovered that centrosomes assemble by an unexpected mechanism involving the molecular motor cytoplasmic dynein (Young et al, 2000; Tynan et al., 2000). This mechanism is mediated by a direct interaction between the essential centrosome protein pericentrin (Doxsey et al., 1994; Dictenberg et al., 1998) and the dynein light intermediate chain (Purohit et al., 1999; Tynana et al., 2000). Moreover, pericentrin interacts with many proteins including the g tubulin complex, which nucleates microtubules (Dictenberg et al., 1998; Diviani et al., 2000). Centrosome assembly is disrupted in human cancer--nearly all malignant tumors have aberrant centrosomes (Pihan et al., 1998, Doxsey, 1999). To our surprise, most tumor cells overexpress pericentrin and artificial overexpression of pericentrin in normal cells induces a cancer-like phenotype (Purohit et al., 1999; Pihan et al., 2000, 2001). Projects:

        1. Determine how centrosome assembly is regulated.
        2. Determine the role of the pericentrin-dynein interaction in spindle organization.
        3. Test how increased pericentrin levels and centrosome defects contribute to cancer.
        4. Identify novel pericentrin-binding proteins.
        5. Determine how pericentrin levels and functions are regulated.
        6. Determine how pericentrin binds and transports g tubulin complexes to centrosomes.

        Project #2: Mechanism of autoantibody production in autoimmunity. Centrosomes are targeted by autoantibodies in the human autoimmune disease scleroderma (Gavanescu et al., 1999), although the mechanism is unknown. We recently discovered that centrosome autoantibodies can be induced an infectious agent (Gavanescu et al., in prep). PCR analysis demonstrated ectopic localization of this organism to skin lesions of scleroderma patients but not controls. These results suggest that this agent contributes to autoantibody development, disease pathogenesis and immune dysfunction in scleroderma patients. Projects:

        1. Determine the mechanism of autoantibody production in mice mutant for immune components.
        2. Test whether centrosome autoreactivity precedes other autoantibodies (anti-nuclear).
        3. Determine if this agent is present in other autoimmune diseases.
        4. Determine if the pathological symptoms of scleroderma are alleviated following treatment of the agent.


        Bibliographic 
        selected publications
        List All   |   Timeline
        1. Hehnly H, Doxsey S. Rab11 endosomes contribute to mitotic spindle organization and orientation. Dev Cell. 2014 Mar 10; 28(5):497-507.
          View in: PubMed
        2. Hehnly H, Hung HF, Doxsey S. One among many: ODF2 isoform 9, a.k.a. Cenexin-1, is required for ciliogenesis. Cell Cycle. 2013 Apr 1; 12(7):1021.
          View in: PubMed
        3. Chen CT, Ettinger AW, Huttner WB, Doxsey SJ. Resurrecting remnants: the lives of post-mitotic midbodies. Trends Cell Biol. 2013 Mar; 23(3):118-28.
          View in: PubMed
        4. Hung HF, Hehnly H, Doxsey S. Multiplying madly: deacetylases take charge of centrosome duplication and amplification. Cell Cycle. 2012 Dec 1; 11(23):4304.
          View in: PubMed
        5. Chen CT, Doxsey SJ. An MBoC favorite: role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP. Mol Biol Cell. 2012 Oct; 23(19):3775.
          View in: PubMed
        6. Hehnly H, Chen CT, Powers CM, Liu HL, Doxsey S. The centrosome regulates the Rab11- dependent recycling endosome pathway at appendages of the mother centriole. Curr Biol. 2012 Oct 23; 22(20):1944-50.
          View in: PubMed
        7. Foraker AB, Camus SM, Evans TM, Majeed SR, Chen CY, Taner SB, Corrêa IR, Doxsey SJ, Brodsky FM. Clathrin promotes centrosome integrity in early mitosis through stabilization of centrosomal ch-TOG. J Cell Biol. 2012 Aug 20; 198(4):591-605.
          View in: PubMed
        8. Chen CT, Hehnly H, Doxsey SJ. Orchestrating vesicle transport, ESCRTs and kinase surveillance during abscission. Nat Rev Mol Cell Biol. 2012 Aug; 13(8):483-8.
          View in: PubMed
        9. Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, Agholme L, Agnello M, Agostinis P, Aguirre-Ghiso JA, Ahn HJ, Ait-Mohamed O, Ait-Si-Ali S, Akematsu T, Akira S, Al-Younes HM, Al-Zeer MA, Albert ML, Albin RL, Alegre-Abarrategui J, Aleo MF, Alirezaei M, Almasan A, Almonte-Becerril M, Amano A, Amaravadi R, Amarnath S, Amer AO, Andrieu-Abadie N, Anantharam V, Ann DK, Anoopkumar-Dukie S, Aoki H, Apostolova N, Arancia G, Aris JP, Asanuma K, Asare NY, Ashida H, Askanas V, Askew DS, Auberger P, Baba M, Backues SK, Baehrecke EH, Bahr BA, Bai XY, Bailly Y, Baiocchi R, Baldini G, Balduini W, Ballabio A, Bamber BA, Bampton ET, Bánhegyi G, Bartholomew CR, Bassham DC, Bast RC, Batoko H, Bay BH, Beau I, Béchet DM, Begley TJ, Behl C, Behrends C, Bekri S, Bellaire B, Bendall LJ, Benetti L, Berliocchi L, Bernardi H, Bernassola F, Besteiro S, Bhatia-Kissova I, Bi X, Biard-Piechaczyk M, Blum JS, Boise LH, Bonaldo P, Boone DL, Bornhauser BC, Bortoluci KR, Bossis I, Bost F, Bourquin JP, Boya P, Boyer-Guittaut M, Bozhkov PV, Brady NR, Brancolini C, Brech A, Brenman JE, Brennand A, Bresnick EH, Brest P, Bridges D, Bristol ML, Brookes PS, Brown EJ, Brumell JH, Brunetti-Pierri N, Brunk UT, Bulman DE, Bultman SJ, Bultynck G, Burbulla LF, Bursch W, Butchar JP, Buzgariu W, Bydlowski SP, Cadwell K, Cahová M, Cai D, Cai J, Cai Q, Calabretta B, Calvo-Garrido J, Camougrand N, Campanella M, Campos-Salinas J, Candi E, Cao L, Caplan AB, Carding SR, Cardoso SM, Carew JS, Carlin CR, Carmignac V, Carneiro LA, Carra S, Caruso RA, Casari G, Casas C, Castino R, Cebollero E, Cecconi F, Celli J, Chaachouay H, Chae HJ, Chai CY, Chan DC, Chan EY, Chang RC, Che CM, Chen CC, Chen GC, Chen GQ, Chen M, Chen Q, Chen SS, Chen W, Chen X, Chen X, Chen X, Chen YG, Chen Y, Chen Y, Chen YJ, Chen Z, Cheng A, Cheng CH, Cheng Y, Cheong H, Cheong JH, Cherry S, Chess-Williams R, Cheung ZH, Chevet E, Chiang HL, Chiarelli R, Chiba T, Chin LS, Chiou SH, Chisari FV, Cho CH, Cho DH, Choi AM, Choi D, Choi KS, Choi ME, Chouaib S, Choubey D, Choubey V, Chu CT, Chuang TH, Chueh SH, Chun T, Chwae YJ, Chye ML, Ciarcia R, Ciriolo MR, Clague MJ, Clark RS, Clarke PG, Clarke R, Codogno P, Coller HA, Colombo MI, Comincini S, Condello M, Condorelli F, Cookson MR, Coombs GH, Coppens I, Corbalan R, Cossart P, Costelli P, Costes S, Coto-Montes A, Couve E, Coxon FP, Cregg JM, Crespo JL, Cronjé MJ, Cuervo AM, Cullen JJ, Czaja MJ, D'Amelio M, Darfeuille-Michaud A, Davids LM, Davies FE, De Felici M, de Groot JF, de Haan CA, De Martino L, De Milito A, De Tata V, Debnath J, Degterev A, Dehay B, Delbridge LM, Demarchi F, Deng YZ, Dengjel J, Dent P, Denton D, Deretic V, Desai SD, Devenish RJ, Di Gioacchino M, Di Paolo G, Di Pietro C, Díaz-Araya G, Díaz-Laviada I, Diaz-Meco MT, Diaz-Nido J, Dikic I, Dinesh-Kumar SP, Ding WX, Distelhorst CW, Diwan A, Djavaheri-Mergny M, Dokudovskaya S, Dong Z, Dorsey FC, Dosenko V, Dowling JJ, Doxsey S, Dreux M, Drew ME, Duan Q, Duchosal MA, Duff K, Dugail I, Durbeej M, Duszenko M, Edelstein CL, Edinger AL, Egea G, Eichinger L, Eissa NT, Ekmekcioglu S, El-Deiry WS, Elazar Z, Elgendy M, Ellerby LM, Eng KE, Engelbrecht AM, Engelender S, Erenpreisa J, Escalante R, Esclatine A, Eskelinen EL, Espert L, Espina V, Fan H, Fan J, Fan QW, Fan Z, Fang S, Fang Y, Fanto M, Fanzani A, Farkas T, Farré JC, Faure M, Fechheimer M, Feng CG, Feng J, Feng Q, Feng Y, Fésüs L, Feuer R, Figueiredo-Pereira ME, Fimia GM, Fingar DC, Finkbeiner S, Finkel T, Finley KD, Fiorito F, Fisher EA, Fisher PB, Flajolet M, Florez-McClure ML, Florio S, Fon EA, Fornai F, Fortunato F, Fotedar R, Fowler DH, Fox HS, Franco R, Frankel LB, Fransen M, Fuentes JM, Fueyo J, Fujii J, Fujisaki K, Fujita E, Fukuda M, Furukawa RH, Gaestel M, Gailly P, Gajewska M, Galliot B, Galy V, Ganesh S, Ganetzky B, Ganley IG, Gao FB, Gao GF, Gao J, Garcia L, Garcia-Manero G, Garcia-Marcos M, Garmyn M, Gartel AL, Gatti E, Gautel M, Gawriluk TR, Gegg ME, Geng J, Germain M, Gestwicki JE, Gewirtz DA, Ghavami S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2012 Apr; 8(4):445-544.
          View in: PubMed
        10. Kuo TC, Doxsey S. Fates and roles of post-mitotic midbodies beyond cytokinesis. Cell Cycle. 2012 Jan 1; 11(1):7-8.
          View in: PubMed
        11. Hehnly H, Doxsey S. Polarity sets the stage for cytokinesis. Mol Biol Cell. 2012 Jan; 23(1):7-11.
          View in: PubMed
        12. Delaval B, Covassin L, Lawson ND, Doxsey S. Centrin depletion causes cyst formation and other ciliopathy-related phenotypes in zebrafish. Cell Cycle. 2011 Nov 15; 10(22):3964-72.
          View in: PubMed
        13. Kuo TC, Chen CT, Baron D, Onder TT, Loewer S, Almeida S, Weismann CM, Xu P, Houghton JM, Gao FB, Daley GQ, Doxsey S. Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity. Nat Cell Biol. 2011 Oct; 13(10):1214-23.
          View in: PubMed
        14. Delaval B, Bright A, Lawson ND, Doxsey S. The cilia protein IFT88 is required for spindle orientation in mitosis. Nat Cell Biol. 2011 Apr; 13(4):461-8.
          View in: PubMed
        15. Patzke S, Redick S, Warsame A, Murga-Zamalloa CA, Khanna H, Doxsey S, Stokke T. CSPP is a ciliary protein interacting with Nephrocystin 8 and required for cilia formation. Mol Biol Cell. 2010 Aug 1; 21(15):2555-67.
          View in: PubMed
        16. Delaval B, Doxsey SJ. Pericentrin in cellular function and disease. J Cell Biol. 2010 Jan 25; 188(2):181-90.
          View in: PubMed
        17. Sivaram MV, Wadzinski TL, Redick SD, Manna T, Doxsey SJ. Dynein light intermediate chain 1 is required for progress through the spindle assembly checkpoint. EMBO J. 2009 Apr 8; 28(7):902-14.
          View in: PubMed
        18. Chen CT, Doxsey S. A last-minute rescue of trapped chromatin. Cell. 2009 Feb 6; 136(3):397-9.
          View in: PubMed
        19. Man C, Rosa J, Yip YL, Cheung AL, Kwong YL, Doxsey SJ, Tsao SW. Id1 overexpression induces tetraploidization and multiple abnormal mitotic phenotypes by modulating aurora A. Mol Biol Cell. 2008 Jun; 19(6):2389-401.
          View in: PubMed
        20. Delaval B, Doxsey S. Genetics. Dwarfism, where pericentrin gains stature. Science. 2008 Feb 8; 319(5864):732-3.
          View in: PubMed
        21. Kang BH, Plescia J, Dohi T, Rosa J, Doxsey SJ, Altieri DC. Regulation of tumor cell mitochondrial homeostasis by an organelle-specific Hsp90 chaperone network. Cell. 2007 Oct 19; 131(2):257-70.
          View in: PubMed
        22. Blazkova H, von Schubert C, Mikule K, Schwab R, Angliker N, Schmuckli-Maurer J, Fernandez PC, Doxsey S, Dobbelaere DA. The IKK inhibitor BMS-345541 affects multiple mitotic cell cycle transitions. Cell Cycle. 2007 Oct 15; 6(20):2531-40.
          View in: PubMed
        23. Sillibourne JE, Delaval B, Redick S, Sinha M, Doxsey SJ. Chromatin remodeling proteins interact with pericentrin to regulate centrosome integrity. Mol Biol Cell. 2007 Sep; 18(9):3667-80.
          View in: PubMed
        24. Mikule K, Delaval B, Kaldis P, Jurcyzk A, Hergert P, Doxsey S. Loss of centrosome integrity induces p38-p53-p21-dependent G1-S arrest. Nat Cell Biol. 2007 Feb; 9(2):160-70.
          View in: PubMed
        25. Parish JL, Rosa J, Wang X, Lahti JM, Doxsey SJ, Androphy EJ. The DNA helicase ChlR1 is required for sister chromatid cohesion in mammalian cells. J Cell Sci. 2006 Dec 1; 119(Pt 23):4857-65.
          View in: PubMed
        26. Man C, Rosa J, Lee LT, Lee VH, Chow BK, Lo KW, Doxsey S, Wu ZG, Kwong YL, Jin DY, Cheung AL, Tsao SW. Latent membrane protein 1 suppresses RASSF1A expression, disrupts microtubule structures and induces chromosomal aberrations in human epithelial cells. Oncogene. 2007 May 10; 26(21):3069-80.
          View in: PubMed
        27. Pockwinse SM, Rajgopal A, Young DW, Mujeeb KA, Nickerson J, Javed A, Redick S, Lian JB, van Wijnen AJ, Stein JL, Stein GS, Doxsey SJ. Microtubule-dependent nuclear-cytoplasmic shuttling of Runx2. J Cell Physiol. 2006 Feb; 206(2):354-62.
          View in: PubMed
        28. Rosa J, Canovas P, Islam A, Altieri DC, Doxsey SJ. Survivin modulates microtubule dynamics and nucleation throughout the cell cycle. Mol Biol Cell. 2006 Mar; 17(3):1483-93.
          View in: PubMed
        29. Doxsey SJ. Molecular links between centrosome and midbody. Mol Cell. 2005 Oct 28; 20(2):170-2.
          View in: PubMed
        30. Golubkov VS, Chekanov AV, Doxsey SJ, Strongin AY. Centrosomal pericentrin is a direct cleavage target of membrane type-1 matrix metalloproteinase in humans but not in mice: potential implications for tumorigenesis. J Biol Chem. 2005 Dec 23; 280(51):42237-41.
          View in: PubMed
        31. Gromley A, Yeaman C, Rosa J, Redick S, Chen CT, Mirabelle S, Guha M, Sillibourne J, Doxsey SJ. Centriolin anchoring of exocyst and SNARE complexes at the midbody is required for secretory-vesicle-mediated abscission. Cell. 2005 Oct 7; 123(1):75-87.
          View in: PubMed
        32. Doxsey S, Zimmerman W, Mikule K. Centrosome control of the cell cycle. Trends Cell Biol. 2005 Jun; 15(6):303-11.
          View in: PubMed
        33. Golubkov VS, Boyd S, Savinov AY, Chekanov AV, Osterman AL, Remacle A, Rozanov DV, Doxsey SJ, Strongin AY. Membrane type-1 matrix metalloproteinase (MT1-MMP) exhibits an important intracellular cleavage function and causes chromosome instability. J Biol Chem. 2005 Jul 1; 280(26):25079-86.
          View in: PubMed
        34. Doxsey S, McCollum D, Theurkauf W. Centrosomes in cellular regulation. Annu Rev Cell Dev Biol. 2005; 21:411-34.
          View in: PubMed
        35. Jurczyk A, Gromley A, Redick S, San Agustin J, Witman G, Pazour GJ, Peters DJ, Doxsey S. Pericentrin forms a complex with intraflagellar transport proteins and polycystin-2 and is required for primary cilia assembly. J Cell Biol. 2004 Aug 30; 166(5):637-43.
          View in: PubMed
        36. Gavanescu I, Pihan G, Halilovic E, Szomolanyi-Tsuda E, Welsh RM, Doxsey S. Mycoplasma infection induces a scleroderma-like centrosome autoantibody response in mice. Clin Exp Immunol. 2004 Aug; 137(2):288-97.
          View in: PubMed
        37. Zimmerman WC, Sillibourne J, Rosa J, Doxsey SJ. Mitosis-specific anchoring of gamma tubulin complexes by pericentrin controls spindle organization and mitotic entry. Mol Biol Cell. 2004 Aug; 15(8):3642-57.
          View in: PubMed
        38. Chen D, Purohit A, Halilovic E, Doxsey SJ, Newton AC. Centrosomal anchoring of protein kinase C betaII by pericentrin controls microtubule organization, spindle function, and cytokinesis. J Biol Chem. 2004 Feb 6; 279(6):4829-39.
          View in: PubMed
        39. Gandhi R, Bonaccorsi S, Wentworth D, Doxsey S, Gatti M, Pereira A. The Drosophila kinesin-like protein KLP67A is essential for mitotic and male meiotic spindle assembly. Mol Biol Cell. 2004 Jan; 15(1):121-31.
          View in: PubMed
        40. Pihan G, Doxsey SJ. Mutations and aneuploidy: co-conspirators in cancer? Cancer Cell. 2003 Aug; 4(2):89-94.
          View in: PubMed
        41. Gromley A, Jurczyk A, Sillibourne J, Halilovic E, Mogensen M, Groisman I, Blomberg M, Doxsey S. A novel human protein of the maternal centriole is required for the final stages of cytokinesis and entry into S phase. J Cell Biol. 2003 May 12; 161(3):535-45.
          View in: PubMed
        42. Pihan GA, Wallace J, Zhou Y, Doxsey SJ. Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas. Cancer Res. 2003 Mar 15; 63(6):1398-404.
          View in: PubMed
        43. Doxsey S. Duplicating dangerously: linking centrosome duplication and aneuploidy. Mol Cell. 2002 Sep; 10(3):439-40.
          View in: PubMed
        44. Doxsey S. Re-evaluating centrosome function. Nat Rev Mol Cell Biol. 2001 Sep; 2(9):688-98.
          View in: PubMed
        45. Doxsey SJ. Centrosomes as command centres for cellular control. Nat Cell Biol. 2001 May; 3(5):E105-8.
          View in: PubMed
        46. Pihan GA, Purohit A, Wallace J, Malhotra R, Liotta L, Doxsey SJ. Centrosome defects can account for cellular and genetic changes that characterize prostate cancer progression. Cancer Res. 2001 Mar 1; 61(5):2212-9.
          View in: PubMed
        47. Purohit A, Pihan GA, Doxsey SJ. Methods for the study of pericentrin in centrosome assembly and function. Methods Cell Biol. 2001; 67:53-69.
          View in: PubMed
        48. Zimmerman W, Doxsey SJ. Construction of centrosomes and spindle poles by molecular motor-driven assembly of protein particles. Traffic. 2000 Dec; 1(12):927-34.
          View in: PubMed
        49. Tynan SH, Purohit A, Doxsey SJ, Vallee RB. Light intermediate chain 1 defines a functional subfraction of cytoplasmic dynein which binds to pericentrin. J Biol Chem. 2000 Oct 20; 275(42):32763-8.
          View in: PubMed
        50. Young A, Dictenberg JB, Purohit A, Tuft R, Doxsey SJ. Cytoplasmic dynein-mediated assembly of pericentrin and gamma tubulin onto centrosomes. Mol Biol Cell. 2000 Jun; 11(6):2047-56.
          View in: PubMed
        51. Diviani D, Langeberg LK, Doxsey SJ, Scott JD. Pericentrin anchors protein kinase A at the centrosome through a newly identified RII-binding domain. Curr Biol. 2000 Apr 6; 10(7):417-20.
          View in: PubMed
        52. Purohit A, Tynan SH, Vallee R, Doxsey SJ. Direct interaction of pericentrin with cytoplasmic dynein light intermediate chain contributes to mitotic spindle organization. J Cell Biol. 1999 Nov 1; 147(3):481-92.
          View in: PubMed
        53. Pihan GA, Doxsey SJ. The mitotic machinery as a source of genetic instability in cancer. Semin Cancer Biol. 1999 Aug; 9(4):289-302.
          View in: PubMed
        54. Gavanescu I, Vazquez-Abad D, McCauley J, Senecal JL, Doxsey S. Centrosome proteins: a major class of autoantigens in scleroderma. J Clin Immunol. 1999 May; 19(3):166-71.
          View in: PubMed
        55. Zimmerman W, Sparks CA, Doxsey SJ. Amorphous no longer: the centrosome comes into focus. Curr Opin Cell Biol. 1999 Feb; 11(1):122-8.
          View in: PubMed
        56. Young A, Tuft R, Carrington W, Doxsey SJ. Centrosome dynamics in living cells. Methods Cell Biol. 1999; 58:223-38.
          View in: PubMed
        57. Bangs P, Burke B, Powers C, Craig R, Purohit A, Doxsey S. Functional analysis of Tpr: identification of nuclear pore complex association and nuclear localization domains and a role in mRNA export. J Cell Biol. 1998 Dec 28; 143(7):1801-12.
          View in: PubMed
        58. Doxsey S. The centrosome--a tiny organelle with big potential. Nat Genet. 1998 Oct; 20(2):104-6.
          View in: PubMed
        59. Pihan GA, Purohit A, Wallace J, Knecht H, Woda B, Quesenberry P, Doxsey SJ. Centrosome defects and genetic instability in malignant tumors. Cancer Res. 1998 Sep 1; 58(17):3974-85.
          View in: PubMed
        60. Dictenberg JB, Zimmerman W, Sparks CA, Young A, Vidair C, Zheng Y, Carrington W, Fay FS, Doxsey SJ. Pericentrin and gamma-tubulin form a protein complex and are organized into a novel lattice at the centrosome. J Cell Biol. 1998 Apr 6; 141(1):163-74.
          View in: PubMed
        61. Blomberg-Wirschell M, Doxsey SJ. Rapid isolation of centrosomes. Methods Enzymol. 1998; 298:228-38.
          View in: PubMed
        62. Tucker JB, Mogensen MM, Henderson CG, Doxsey SJ, Wright M, Stearns T. Nucleation and capture of large cell surface-associated microtubule arrays that are not located near centrosomes in certain cochlear epithelial cells. J Anat. 1998 Jan; 192 ( Pt 1):119-30.
          View in: PubMed
        63. Pockwinse SM, Krockmalnic G, Doxsey SJ, Nickerson J, Lian JB, van Wijnen AJ, Stein JL, Stein GS, Penman S. Cell cycle independent interaction of CDC2 with the centrosome, which is associated with the nuclear matrix-intermediate filament scaffold. Proc Natl Acad Sci U S A. 1997 Apr 1; 94(7):3022-7.
          View in: PubMed
        64. Pereira AJ, Dalby B, Stewart RJ, Doxsey SJ, Goldstein LS. Mitochondrial association of a plus end-directed microtubule motor expressed during mitosis in Drosophila. J Cell Biol. 1997 Mar 10; 136(5):1081-90.
          View in: PubMed
        65. Mogensen MM, Mackie JB, Doxsey SJ, Stearns T, Tucker JB. Centrosomal deployment of gamma-tubulin and pericentrin: evidence for a microtubule-nucleating domain and a minus-end docking domain in certain mouse epithelial cells. Cell Motil Cytoskeleton. 1997; 36(3):276-90.
          View in: PubMed
        66. Vidair CA, Huang RN, Doxsey SJ. Heat shock causes protein aggregation and reduced protein solubility at the centrosome and other cytoplasmic locations. Int J Hyperthermia. 1996 Sep-Oct; 12(5):681-95.
          View in: PubMed
        67. Brown CR, Doxsey SJ, Hong-Brown LQ, Martin RL, Welch WJ. Molecular chaperones and the centrosome. A role for TCP-1 in microtubule nucleation. J Biol Chem. 1996 Jan 12; 271(2):824-32.
          View in: PubMed
        68. Brown CR, Hong-Brown LQ, Doxsey SJ, Welch WJ. Molecular chaperones and the centrosome. A role for HSP 73 in centrosomal repair following heat shock treatment. J Biol Chem. 1996 Jan 12; 271(2):833-40.
          View in: PubMed
        69. Sparks CA, Fey EG, Vidair CA, Doxsey SJ. Phosphorylation of NUMA occurs during nuclear breakdown and not mitotic spindle assembly. J Cell Sci. 1995 Nov; 108 ( Pt 11):3389-96.
          View in: PubMed
        70. Shisheva A, Doxsey SJ, Buxton JM, Czech MP. Pericentriolar targeting of GDP-dissociation inhibitor isoform 2. Eur J Cell Biol. 1995 Oct; 68(2):143-58.
          View in: PubMed
        71. Vidair CA, Doxsey SJ, Dewey WC. Thermotolerant cells possess an enhanced capacity to repair heat-induced alterations to centrosome structure and function. J Cell Physiol. 1995 Apr; 163(1):194-203.
          View in: PubMed
        72. Brown CR, Doxsey SJ, White E, Welch WJ. Both viral (adenovirus E1B) and cellular (hsp 70, p53) components interact with centrosomes. J Cell Physiol. 1994 Jul; 160(1):47-60.
          View in: PubMed
        73. Doxsey SJ, Stein P, Evans L, Calarco PD, Kirschner M. Pericentrin, a highly conserved centrosome protein involved in microtubule organization. Cell. 1994 Feb 25; 76(4):639-50.
          View in: PubMed
        74. Vidair CA, Doxsey SJ, Dewey WC. Heat shock alters centrosome organization leading to mitotic dysfunction and cell death. J Cell Physiol. 1993 Mar; 154(3):443-55.
          View in: PubMed
        75. Gard DL, Hafezi S, Zhang T, Doxsey SJ. Centrosome duplication continues in cycloheximide-treated Xenopus blastulae in the absence of a detectable cell cycle. J Cell Biol. 1990 Jun; 110(6):2033-42.
          View in: PubMed
        76. Ellens H, Doxsey S, Glenn JS, White JM. Delivery of macromolecules into cells expressing a viral membrane fusion protein. Methods Cell Biol. 1989; 31:155-78.
          View in: PubMed
        77. Doxsey SJ, Brodsky FM, Blank GS, Helenius A. Inhibition of endocytosis by anti-clathrin antibodies. Cell. 1987 Jul 31; 50(3):453-63.
          View in: PubMed
        78. Doxsey SJ, Sambrook J, Helenius A, White J. An efficient method for introducing macromolecules into living cells. J Cell Biol. 1985 Jul; 101(1):19-27.
          View in: PubMed
        79. Fawcett DW, Doxsey S, Stagg DA, Young AS. The entry of sporozoites of Theileria parva into bovine lymphocytes in vitro. Electron microscopic observations. Eur J Cell Biol. 1982 Apr; 27(1):10-21.
          View in: PubMed
        For assistance with using Profiles, please refer to the online tutorials or contact UMMS Help Desk or call 508-856-8643.
        Stephen's Networks
        Click the "See All" links for more information and interactive visualizations!
        Concepts
        _
        Co-Authors
        _
        Similar People
        _
        Same Department
        Physical Neighbors
        _

        This is an official Page/Publication of the University of Massachusetts Worcester Campus
        Office of the Vice Provost for Research, 55 Lake Ave North, Worcester, Massachusetts 01655
        Questions or Comments? Email: publicaffairs@umassmed.edu Phone: 508-856-1572