Header Logo

Silvia Corvera MD

TitleProfessor
Endowed TitleEndowed Chair in Diabetes Research
InstitutionUMass Chan Medical School
DepartmentProgram in Molecular Medicine
AddressUMass Chan Medical School
373 Plantation Street Two Biotech Suite 107
Worcester MA 01605
vCardDownload vCard
    Other Positions
    InstitutionT.H. Chan School of Medicine
    DepartmentProgram in Molecular Medicine

    InstitutionMorningside Graduate School of Biomedical Sciences
    DepartmentInterdisciplinary Graduate Program

    InstitutionMorningside Graduate School of Biomedical Sciences
    DepartmentMD/PhD Program

    InstitutionMorningside Graduate School of Biomedical Sciences
    DepartmentNeuroscience

    InstitutionMorningside Graduate School of Biomedical Sciences
    DepartmentPostbaccalaureate Research Education Program

    InstitutionMorningside Graduate School of Biomedical Sciences
    DepartmentTranslational Science


    Collapse Biography 
    Collapse education and training
    Colegio Madrid, Madrid, DF, MexicoBSScience
    Universidad Nacional Autonoma de Mexico, Mexico City, , MexicoMSBiochemistry
    Universidad Nacional Autonoma de Mexico, Mexico City, , MexicoMD

    Collapse Overview 
    Collapse overview

    Academic Background

    Silvia Corvera is Professor of Molecular Medicine, director of the MD/PhD (MSTP) program, and director of the Clinical Translational Research Pathway. She holds the Endowed Chair in Diabetes Research.

    She received her M.D. and MSc in Molecular Biology at the Universidad Nacional Autonoma de Mexico, and was awarded a Fogarty International Fellowship to conduct postdoctoral studies in the US. She was on the Faculty at the Department of Pathology at the University of Pennsylvania (1987-1990) before moving to the newly formed Program in Molecular Medicine at the University of Massachusetts Medical School.

    Current Research

    Metabolic diseases, such as type-2 diabetes, non-alcoholic fatty liver disease (NASH), and hypertension are an emerging worldwide epidemic associated with substantial human suffering and a large economic burden. We are interested in understanding the cellular and molecular mechanisms that underlie metabolic diseases, and enable therapeutic strategies to be developed.

    We are specifically interested in human adipose tissue. Adipose tissue has amazing properties: each adipocyte can expand its size very rapidly, and is able to increase lipid storage 4-5 fold. In response to fasting, it rapidly releases this lipid to provide energy to the entire body. However, there seems to be a maximal capacity to expand, and when this capacity is reached adipocyte function fails. How the adipocyte can change its volume so dynamically is a very interesting cell biology question, and a very relevant one in understanding metabolic disease mechanisms. In fact, at similar weight, individuals whose adipose tissue is made up of many small adipocytes are at a lower risk of metabolic disease compared to individuals whose tissue contains fewer large adipocytes. Thus, one of our main interests is to understand the mechanisms that control the number and size of adipocytes.

    Another amazing property of adipose tissue is its diversity of functions. We usually think of adipose tissue as a site for fat storage. However, a form of adipose tissue, called “brite” or “beige” in humans, is constantly burning fat to generate heat. “Brite/beige” adipose tissue is localized around the neck, close to major blood vessels, where the heat generated can serve to maintain core temperature. Humans who have more of this heat-generating adipose tissue tend to be lean and metabolically healthy, but what mechanisms underlie this correlation is not known. We have developed an approach to generate human “brite/beige” adipocytes in-vitro, and found that these cells can improve glucose metabolism when implanted into immune-compromised mice. A major goal now is to understand the mechanism for this effect, by discovering what factors stimulate the proliferation and differentiation of human brite/beige adipocytes, and whether these cells improve glucose metabolism through consumption of energy, through effects on other tissues, or both.

    Another great unknown in the field of adipose tissue are the genetic factors that define its body pattern. Some individuals develop more adipose tissue under the skin in upper or lower extremities, while others have larger amounts in the abdominal region. These latter individuals are at a much higher risk of metabolic disease, even with little weight gain. We have developed an approach to generate adipose tissue “organoids”, starting from minute fragments of human adipose tissue that can be obtained through needle suction. These fragments can be induced to develop microvasculature and new adipocyte progenitors, which differentiate into functional adipocytes within a multicellular context. By studying the properties of adipose organoids generated from different body sites, and from individuals with differing body shapes, we hope to gain insight on the major determinants of human adipose tissue patterning.

    Strong collaborations with clinical partners from the Departments of Surgery and OBGyN have allowed us to use human adipose tissue for our studies and determine how these are associated with diseases such as type 2 diabetes and gestational diabetes.


    Collapse Rotation Projects

    Rotation Projects

    Our rotation projects are in the area of diabetes and obesity, and we are interested in basic mechanisms of cell proliferation, differentiation and communication. Diabetes is highly correlated with obesity, but why obesity causes disease in some humans and not others is not understood. Amazingly, we still don’t understand how adipose tissue grows in human adults. A better understanding of this fascinating process can give us insight into basic mechanisms of cell growth, differentiation and communication, as well as mechanisms of disease, not only diabetes but also cancer and developmental defects. During your rotation, you will work on an important piece of a larger project, that has a well-defined outcome. Thus, your successful completion of the rotation project will allow you to be included at the time of publication of the work.

    Project 1: Adipose tissue is not only formed by adipocytes, but by other cells such as endothelial, mural and immune cells. Also, there are multiple kinds of adipocytes with different functions. We have recently developed conditions to develop adipose tissue from humans in-vitro (adipose tissue “organoids”). From this tissue we have been able to separated single cells, and find that they grow into different kinds of clones. We are now conducting RNAseq on >300 of those clones, to determine how many cell types exist in human adipose tissue, and what their roles are. In this rotation, you will be able to analyze RNAseq data to define what genes characterize these cells, and you will use virus transduction to create immortalized cells for further study.

    Project 2: Adipose tissue has many functions besides storing and releasing lipids. It also has to coordinate metabolism in the whole body. We have found that human “beige” adipose tissue, which is found in people who are metabolically healthy, expresses genes for secreted factors that communicate with the immune system and the brain. These include IL-33 and enkephalins. In this project you will knockout these genes, and investigate whether this changes the function of adipose tissue when we implant it into immune compromised mice.


    Collapse Post Docs

    A postdoctoral position is available to study in this laboratory. Contact Dr. Corvera for additional details.


    Collapse Bibliographic 
    Collapse selected publications
    Publications listed below are automatically derived from MEDLINE/PubMed and other sources, which might result in incorrect or missing publications. Faculty can login to make corrections and additions.
    Newest   |   Oldest   |   Most Cited   |   Most Discussed   |   Timeline   |   Field Summary   |   Plain Text
    PMC Citations indicate the number of times the publication was cited by articles in PubMed Central, and the Altmetric score represents citations in news articles and social media. (Note that publications are often cited in additional ways that are not shown here.) Fields are based on how the National Library of Medicine (NLM) classifies the publication's journal and might not represent the specific topic of the publication. Translation tags are based on the publication type and the MeSH terms NLM assigns to the publication. Some publications (especially newer ones and publications not in PubMed) might not yet be assigned Field or Translation tags.) Click a Field or Translation tag to filter the publications.
    1. Nguyen TT, Loureiro ZY, Desai A, DeSouza T, Joyce S, Khair L, Samant A, Cirka H, Solivan-Rivera J, Ziegler R, Brehm M, Messina LM, Corvera S. A distinct class of hematopoietic stem cells develop from the human yellow bone marrow. bioRxiv. 2023 Aug 30. PMID: 37693594.
      Citations:    
    2. Yang Loureiro Z, Joyce S, DeSouza T, Solivan-Rivera J, Desai A, Skritakis P, Yang Q, Ziegler R, Zhong D, Nguyen TT, MacDougald OA, Corvera S. Wnt signaling preserves progenitor cell multipotency during adipose tissue development. Nat Metab. 2023 06; 5(6):1014-1028. PMID: 37337125.
      Citations: 2     Fields:    Translation:HumansAnimalsCells
    3. Solivan-Rivera J, Yang Loureiro Z, DeSouza T, Desai A, Pallat S, Yang Q, Rojas-Rodriguez R, Ziegler R, Skritakis P, Joyce S, Zhong D, Nguyen T, Corvera S. A neurogenic signature involving monoamine Oxidase-A controls human thermogenic adipose tissue development. Elife. 2022 09 15; 11. PMID: 36107478.
      Citations: 2     Fields:    Translation:HumansAnimals
    4. Corvera S. Perinatal fat progenitors shape adult metabolism. Nat Metab. 2022 08; 4(8):963-964. PMID: 35982291.
      Citations:    Fields:    Translation:Humans
    5. Corvera S, Solivan-Rivera J, Yang Loureiro Z. Angiogenesis in adipose tissue and obesity. Angiogenesis. 2022 11; 25(4):439-453. PMID: 35857195.
      Citations: 12     Fields:    Translation:HumansAnimalsCells
    6. Yang Loureiro Z, Solivan-Rivera J, Corvera S. Adipocyte Heterogeneity Underlying Adipose Tissue Functions. Endocrinology. 2022 01 01; 163(1). PMID: 34223880.
      Citations: 5     Fields:    Translation:HumansAnimalsCells
    7. Tsagkaraki E, Nicoloro SM, DeSouza T, Solivan-Rivera J, Desai A, Lifshitz LM, Shen Y, Kelly M, Guilherme A, Henriques F, Amrani N, Ibraheim R, Rodriguez TC, Luk K, Maitland S, Friedline RH, Tauer L, Hu X, Kim JK, Wolfe SA, Sontheimer EJ, Corvera S, Czech MP. CRISPR-enhanced human adipocyte browning as cell therapy for metabolic disease. Nat Commun. 2021 11 26; 12(1):6931. PMID: 34836963.
      Citations: 19     Fields:    Translation:HumansAnimalsCells
    8. Roth J, Ashcroft FM, Wollheim CB, Kieffer TJ, Cherrington AD, Bergman RN, Taylor R, Najjar SM, Pedersen O, Ellingsgaard H, Holst JJ, Nauck MA, Kadowaki T, Czech MP, Corvera S, Saltiel AR, Corkey BE, Atkinson MA. Voices: Insulin and beyond. Cell Metab. 2021 04 06; 33(4):692-699. PMID: 33826910.
      Citations: 1     Fields:    Translation:HumansCells
    9. Corvera S. Cellular Heterogeneity in Adipose Tissues. Annu Rev Physiol. 2021 02 10; 83:257-278. PMID: 33566675.
      Citations: 38     Fields:    Translation:HumansAnimalsCells
    10. Rojas-Rodriguez R, Ziegler R, DeSouza T, Majid S, Madore AS, Amir N, Pace VA, Nachreiner D, Alfego D, Mathew J, Leung K, Moore Simas TA, Corvera S. PAPPA-mediated adipose tissue remodeling mitigates insulin resistance and protects against gestational diabetes in mice and humans. Sci Transl Med. 2020 11 25; 12(571). PMID: 33239385.
      Citations: 13     Fields:    Translation:HumansAnimals
    11. Tran KV, Brown EL, DeSouza T, Jespersen NZ, Nandrup-Bus C, Yang Q, Yang Z, Desai A, Min SY, Rojas-Rodriguez R, Lundh M, Feizi A, Willenbrock H, Larsen TJ, Severinsen MCK, Malka K, Mozzicato AM, Deshmukh AS, Emanuelli B, Pedersen BK, Fitzgibbons T, Scheele C, Corvera S, Nielsen S. Human thermogenic adipocyte regulation by the long noncoding RNA LINC00473. Nat Metab. 2020 05; 2(5):397-412. PMID: 32440655.
      Citations: 28     Fields:    Translation:HumansCells
    12. Min SY, Desai A, Yang Z, Sharma A, DeSouza T, Genga RMJ, Kucukural A, Lifshitz LM, Nielsen S, Scheele C, Maehr R, Garber M, Corvera S. Diverse repertoire of human adipocyte subtypes develops from transcriptionally distinct mesenchymal progenitor cells. Proc Natl Acad Sci U S A. 2019 09 03; 116(36):17970-17979. PMID: 31420514.
      Citations: 55     Fields:    Translation:HumansCells
    13. Min SY, Learnard H, Kant S, Gealikman O, Rojas-Rodriguez R, DeSouza T, Desai A, Keaney JF, Corvera S, Craige SM. Exercise Rescues Gene Pathways Involved in Vascular Expansion and Promotes Functional Angiogenesis in Subcutaneous White Adipose Tissue. Int J Mol Sci. 2019 Apr 25; 20(8). PMID: 31027261.
      Citations: 10     Fields:    Translation:AnimalsCells
    14. Rojas-Rodriguez R, Lujan-Hernandez J, Min SY, DeSouza T, Teebagy P, Desai A, Tessier H, Slamin R, Siegel-Reamer L, Berg C, Baez A, Lalikos J, Corvera S. Generation of Functional Human Adipose Tissue in Mice from Primed Progenitor Cells. Tissue Eng Part A. 2019 06; 25(11-12):842-854. PMID: 30306830.
      Citations: 8     Fields:    Translation:HumansAnimalsCells
    15. Magoulas PL, Shchelochkov OA, Bainbridge MN, Ben-Shachar S, Yatsenko S, Potocki L, Lewis RA, Searby C, Marcogliese AN, Elghetany MT, Zapata G, Hern?ndez PP, Gadkari M, Einhaus D, Muzny DM, Gibbs RA, Bertuch AA, Scott DA, Corvera S, Franco LM. Syndromic congenital myelofibrosis associated with a loss-of-function variant in RBSN. Blood. 2018 08 09; 132(6):658-662. PMID: 29784638.
      Citations:    Fields:    Translation:Humans
    16. Tran KV, Fitzgibbons T, Min SY, DeSouza T, Corvera S. Distinct adipocyte progenitor cells are associated with regional phenotypes of perivascular aortic fat in mice. Mol Metab. 2018 03; 9:199-206. PMID: 29396370.
      Citations: 18     Fields:    Translation:AnimalsCells
    17. Maurizi G, Poloni A, Mattiucci D, Santi S, Maurizi A, Izzi V, Giuliani A, Mancini S, Zingaretti MC, Perugini J, Severi I, Falconi M, Vivarelli M, Rippo MR, Corvera S, Giordano A, Leoni P, Cinti S. Human White Adipocytes Convert Into "Rainbow" Adipocytes In Vitro. J Cell Physiol. 2017 Oct; 232(10):2887-2899. PMID: 27987321.
      Citations: 9     Fields:    Translation:HumansCells
    18. Ly S, Navaroli DM, Didiot MC, Cardia J, Pandarinathan L, Alterman JF, Fogarty K, Standley C, Lifshitz LM, Bellve KD, Prot M, Echeverria D, Corvera S, Khvorova A. Visualization of self-delivering hydrophobically modified siRNA cellular internalization. Nucleic Acids Res. 2017 01 09; 45(1):15-25. PMID: 27899655.
      Citations: 46     Fields:    Translation:HumansAnimalsCells
    19. Min SY, Kady J, Nam M, Rojas-Rodriguez R, Berkenwald A, Kim JH, Noh HL, Kim JK, Cooper MP, Fitzgibbons T, Brehm MA, Corvera S. Human 'brite/beige' adipocytes develop from capillary networks, and their implantation improves metabolic homeostasis in mice. Nat Med. 2016 Mar; 22(3):312-8. PMID: 26808348.
      Citations: 134     Fields:    Translation:HumansAnimalsCells
    20. Chappell AG, Lujan-Hernandez J, Perry DJ, Corvera S, Lalikos JF. Alternatively Activated M2 Macrophages Improve Autologous Fat Graft Survival in a Mouse Model through Induction of Angiogenesis. Plast Reconstr Surg. 2015 Aug; 136(2):277e. PMID: 25946608.
      Citations: 6     Fields:    Translation:AnimalsCells
    21. Rojas-Rodriguez R, Lifshitz LM, Bellve KD, Min SY, Pires J, Leung K, Boeras C, Sert A, Draper JT, Corvera S, Moore Simas TA. Human adipose tissue expansion in pregnancy is impaired in gestational diabetes mellitus. Diabetologia. 2015 Sep; 58(9):2106-14. PMID: 26067361.
      Citations: 22     Fields:    Translation:HumansCells
    22. Moore Simas TA, Corvera S, Lee MM, Zhang N, Leung K, Olendzki B, Barton B, Rosal MC. Understanding multifactorial influences on the continuum of maternal weight trajectories in pregnancy and early postpartum: study protocol, and participant baseline characteristics. BMC Pregnancy Childbirth. 2015 Mar 28; 15:71. PMID: 25885002.
      Citations: 2     Fields:    Translation:Humans
    23. Rohatgi RA, Janusis J, Leonard D, Bellv? KD, Fogarty KE, Baehrecke EH, Corvera S, Shaw LM. Beclin 1 regulates growth factor receptor signaling in breast cancer. Oncogene. 2015 Oct 16; 34(42):5352-62. PMID: 25639875.
      Citations: 35     Fields:    Translation:HumansCells
    24. Stockler S, Corvera S, Lambright D, Fogarty K, Nosova E, Leonard D, Steinfeld R, Ackerley C, Shyr C, Au N, Selby K, van Allen M, Vallance H, Wevers R, Watkins D, Rosenblatt D, Ross CJ, Conibear E, Wasserman W, van Karnebeek C. Single point mutation in Rabenosyn-5 in a female with intractable seizures and evidence of defective endocytotic trafficking. Orphanet J Rare Dis. 2014 Sep 20; 9:141. PMID: 25233840.
      Citations: 14     Fields:    Translation:Humans
    25. Gealekman O, Gurav K, Chouinard M, Straubhaar J, Thompson M, Malkani S, Hartigan C, Corvera S. Control of adipose tissue expandability in response to high fat diet by the insulin-like growth factor-binding protein-4. J Biol Chem. 2014 Jun 27; 289(26):18327-38. PMID: 24778188.
      Citations: 30     Fields:    Translation:HumansAnimalsCells
    26. Rojas-Rodriguez R, Gealekman O, Kruse ME, Rosenthal B, Rao K, Min S, Bellve KD, Lifshitz LM, Corvera S. Adipose tissue angiogenesis assay. Methods Enzymol. 2014; 537:75-91. PMID: 24480342.
      Citations: 16     Fields:    Translation:HumansAnimalsCells
    27. Corvera S, Gealekman O. Adipose tissue angiogenesis: impact on obesity and type-2 diabetes. Biochim Biophys Acta. 2014 Mar; 1842(3):463-72. PMID: 23770388.
      Citations: 82     Fields:    Translation:HumansCells
    28. Gealekman O, Guseva N, Gurav K, Gusev A, Hartigan C, Thompson M, Malkani S, Corvera S. Effect of rosiglitazone on capillary density and angiogenesis in adipose tissue of normoglycaemic humans in a randomised controlled trial. Diabetologia. 2012 Oct; 55(10):2794-2799. PMID: 22847059.
      Citations: 22     Fields:    Translation:HumansCells
    29. Hardy OT, Czech MP, Corvera S. What causes the insulin resistance underlying obesity? Curr Opin Endocrinol Diabetes Obes. 2012 Apr; 19(2):81-7. PMID: 22327367.
      Citations: 195     Fields:    Translation:Humans
    30. Tran KV, Gealekman O, Frontini A, Zingaretti MC, Morroni M, Giordano A, Smorlesi A, Perugini J, De Matteis R, Sbarbati A, Corvera S, Cinti S. The vascular endothelium of the adipose tissue gives rise to both white and brown fat cells. Cell Metab. 2012 Feb 08; 15(2):222-9. PMID: 22326223.
      Citations: 173     Fields:    Translation:HumansAnimalsCells
    31. Navaroli DM, Bellv? KD, Standley C, Lifshitz LM, Cardia J, Lambright D, Leonard D, Fogarty KE, Corvera S. Rabenosyn-5 defines the fate of the transferrin receptor following clathrin-mediated endocytosis. Proc Natl Acad Sci U S A. 2012 Feb 21; 109(8):E471-80. PMID: 22308388.
      Citations: 37     Fields:    Translation:HumansAnimalsCells
    32. Young JL, Mora A, Cerny A, Czech MP, Woda B, Kurt-Jones EA, Finberg RW, Corvera S. CD14 deficiency impacts glucose homeostasis in mice through altered adrenal tone. PLoS One. 2012; 7(1):e29688. PMID: 22253759.
      Citations: 12     Fields:    Translation:HumansAnimalsCells
    33. St Pierre CA, Leonard D, Corvera S, Kurt-Jones EA, Finberg RW. Antibodies to cell surface proteins redirect intracellular trafficking pathways. Exp Mol Pathol. 2011 Dec; 91(3):723-32. PMID: 21819978.
      Citations: 18     Fields:    Translation:HumansAnimalsCells
    34. Corvera S, Czech MP. Tensions rise and blood flows over dysfunctional fat. Circulation. 2011 Jul 05; 124(1):13-6. PMID: 21730320.
      Citations: 3     Fields:    Translation:HumansCells
    35. Gealekman O, Guseva N, Hartigan C, Apotheker S, Gorgoglione M, Gurav K, Tran KV, Straubhaar J, Nicoloro S, Czech MP, Thompson M, Perugini RA, Corvera S. Depot-specific differences and insufficient subcutaneous adipose tissue angiogenesis in human obesity. Circulation. 2011 Jan 18; 123(2):186-94. PMID: 21200001.
      Citations: 150     Fields:    Translation:Humans
    36. Burkart A, Shi X, Chouinard M, Corvera S. Adenylate kinase 2 links mitochondrial energy metabolism to the induction of the unfolded protein response. J Biol Chem. 2011 Feb 11; 286(6):4081-9. PMID: 20876536.
      Citations: 29     Fields:    Translation:HumansAnimalsCells
    37. Stuffers S, Maler?d L, Schink KO, Corvera S, Stenmark H, Brech A. Time-resolved ultrastructural detection of phosphatidylinositol 3-phosphate. J Histochem Cytochem. 2010 Nov; 58(11):1025-32. PMID: 20713985.
      Citations: 2     Fields:    Translation:HumansCells
    38. Mishra A, Eathiraj S, Corvera S, Lambright DG. Structural basis for Rab GTPase recognition and endosome tethering by the C2H2 zinc finger of Early Endosomal Autoantigen 1 (EEA1). Proc Natl Acad Sci U S A. 2010 Jun 15; 107(24):10866-71. PMID: 20534488.
      Citations: 52     Fields:    Translation:HumansCells
    39. Walz HA, Shi X, Chouinard M, Bue CA, Navaroli DM, Hayakawa A, Zhou QL, Nadler J, Leonard DM, Corvera S. Isoform-specific regulation of Akt signaling by the endosomal protein WDFY2. J Biol Chem. 2010 May 07; 285(19):14101-8. PMID: 20189988.
      Citations: 21     Fields:    Translation:AnimalsCells
    40. Patti ME, Corvera S. The role of mitochondria in the pathogenesis of type 2 diabetes. Endocr Rev. 2010 Jun; 31(3):364-95. PMID: 20156986.
      Citations: 231     Fields:    Translation:HumansAnimalsCells
    41. Leonard D, Hayakawa A, Lawe D, Lambright D, Bellve KD, Standley C, Lifshitz LM, Fogarty KE, Corvera S. Sorting of EGF and transferrin at the plasma membrane and by cargo-specific signaling to EEA1-enriched endosomes. J Cell Sci. 2008 Oct 15; 121(Pt 20):3445-58. PMID: 18827013.
      Citations: 69     Fields:    Translation:AnimalsCells
    42. Shi X, Burkart A, Nicoloro SM, Czech MP, Straubhaar J, Corvera S. Paradoxical effect of mitochondrial respiratory chain impairment on insulin signaling and glucose transport in adipose cells. J Biol Chem. 2008 Nov 07; 283(45):30658-67. PMID: 18779333.
      Citations: 32     Fields:    Translation:AnimalsCells
    43. Gealekman O, Burkart A, Chouinard M, Nicoloro SM, Straubhaar J, Corvera S. Enhanced angiogenesis in obesity and in response to PPARgamma activators through adipocyte VEGF and ANGPTL4 production. Am J Physiol Endocrinol Metab. 2008 Nov; 295(5):E1056-64. PMID: 18728224.
      Citations: 84     Fields:    Translation:HumansAnimalsCells
    44. Puri V, Ranjit S, Konda S, Nicoloro SM, Straubhaar J, Chawla A, Chouinard M, Lin C, Burkart A, Corvera S, Perugini RA, Czech MP. Cidea is associated with lipid droplets and insulin sensitivity in humans. Proc Natl Acad Sci U S A. 2008 Jun 03; 105(22):7833-8. PMID: 18509062.
      Citations: 156     Fields:    Translation:HumansAnimalsCells
    45. Huang S, Lifshitz LM, Jones C, Bellve KD, Standley C, Fonseca S, Corvera S, Fogarty KE, Czech MP. Insulin stimulates membrane fusion and GLUT4 accumulation in clathrin coats on adipocyte plasma membranes. Mol Cell Biol. 2007 May; 27(9):3456-69. PMID: 17339344.
      Citations: 44     Fields:    Translation:AnimalsCells
    46. Hayakawa A, Hayes S, Leonard D, Lambright D, Corvera S. Evolutionarily conserved structural and functional roles of the FYVE domain. Biochem Soc Symp. 2007; (74):95-105. PMID: 17233583.
      Citations: 18     Fields:    Translation:HumansAnimalsCells
    47. Corvera S, Burkart A, Kim JY, Christianson J, Wang Z, Scherer PE. Keystone meeting summary: 'Adipogenesis, obesity, and inflammation' and 'Diabetes mellitus and the control of cellular energy metabolism, ' January 21-26, 2006, Vancouver, Canada. Genes Dev. 2006 Aug 15; 20(16):2193-201. PMID: 16912272.
      Citations: 2     Fields:    Translation:HumansAnimalsCells
    48. Hayakawa A, Leonard D, Murphy S, Hayes S, Soto M, Fogarty K, Standley C, Bellve K, Lambright D, Mello C, Corvera S. The WD40 and FYVE domain containing protein 2 defines a class of early endosomes necessary for endocytosis. Proc Natl Acad Sci U S A. 2006 Aug 08; 103(32):11928-33. PMID: 16873553.
      Citations: 29     Fields:    Translation:HumansAnimalsCells
    49. Bellve KD, Leonard D, Standley C, Lifshitz LM, Tuft RA, Hayakawa A, Corvera S, Fogarty KE. Plasma membrane domains specialized for clathrin-mediated endocytosis in primary cells. J Biol Chem. 2006 Jun 09; 281(23):16139-46. PMID: 16537543.
      Citations: 31     Fields:    Translation:AnimalsCells
    50. Wilson-Fritch L, Nicoloro S, Chouinard M, Lazar MA, Chui PC, Leszyk J, Straubhaar J, Czech MP, Corvera S. Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone. J Clin Invest. 2004 Nov; 114(9):1281-9. PMID: 15520860.
      Citations: 281     Fields:    Translation:AnimalsCells
    51. Bose A, Robida S, Furcinitti PS, Chawla A, Fogarty K, Corvera S, Czech MP. Unconventional myosin Myo1c promotes membrane fusion in a regulated exocytic pathway. Mol Cell Biol. 2004 Jun; 24(12):5447-58. PMID: 15169906.
      Citations: 82     Fields:    Translation:AnimalsCells
    52. Bl?her M, Wilson-Fritch L, Leszyk J, Laustsen PG, Corvera S, Kahn CR. Role of insulin action and cell size on protein expression patterns in adipocytes. J Biol Chem. 2004 Jul 23; 279(30):31902-9. PMID: 15131120.
      Citations: 30     Fields:    Translation:AnimalsCells
    53. Guilherme A, Soriano NA, Bose S, Holik J, Bose A, Pomerleau DP, Furcinitti P, Leszyk J, Corvera S, Czech MP. EHD2 and the novel EH domain binding protein EHBP1 couple endocytosis to the actin cytoskeleton. J Biol Chem. 2004 Mar 12; 279(11):10593-605. PMID: 14676205.
      Citations: 84     Fields:    Translation:HumansAnimalsCells
    54. Hayakawa A, Hayes SJ, Lawe DC, Sudharshan E, Tuft R, Fogarty K, Lambright D, Corvera S. Structural basis for endosomal targeting by FYVE domains. J Biol Chem. 2004 Feb 13; 279(7):5958-66. PMID: 14594806.
      Citations: 59     Fields:    Translation:HumansAnimalsCells
    55. Pandarpurkar M, Wilson-Fritch L, Corvera S, Markholst H, Hornum L, Greiner DL, Mordes JP, Rossini AA, Bortell R. Ian4 is required for mitochondrial integrity and T cell survival. Proc Natl Acad Sci U S A. 2003 Sep 02; 100(18):10382-7. PMID: 12930893.
      Citations: 34     Fields:    Translation:AnimalsCells
    56. Lawe DC, Sitouah N, Hayes S, Chawla A, Virbasius JV, Tuft R, Fogarty K, Lifshitz L, Lambright D, Corvera S. Essential role of Ca2+/calmodulin in Early Endosome Antigen-1 localization. Mol Biol Cell. 2003 Jul; 14(7):2935-45. PMID: 12857876.
      Citations: 15     Fields:    Translation:AnimalsCells
    57. Burkart A, Samii B, Corvera S, Shpetner HS. Regulation of the SHP-2 tyrosine phosphatase by a novel cholesterol- and cell confluence-dependent mechanism. J Biol Chem. 2003 May 16; 278(20):18360-7. PMID: 12611902.
      Citations: 8     Fields:    Translation:AnimalsCells
    58. Wilson-Fritch L, Burkart A, Bell G, Mendelson K, Leszyk J, Nicoloro S, Czech M, Corvera S. Mitochondrial biogenesis and remodeling during adipogenesis and in response to the insulin sensitizer rosiglitazone. Mol Cell Biol. 2003 Feb; 23(3):1085-94. PMID: 12529412.
      Citations: 190     Fields:    Translation:AnimalsCells
    59. Corvera S. Phosphatidylinositol 3-kinase and the control of endosome dynamics: new players defined by structural motifs. Traffic. 2001 Dec; 2(12):859-66. PMID: 11737823.
      Citations: 8     Fields:    Translation:HumansAnimalsCells
    60. Dumas JJ, Merithew E, Sudharshan E, Rajamani D, Hayes S, Lawe D, Corvera S, Lambright DG. Multivalent endosome targeting by homodimeric EEA1. Mol Cell. 2001 Nov; 8(5):947-58. PMID: 11741531.
      Citations: 97     Fields:    Translation:Cells
    61. Lawe DC, Chawla A, Merithew E, Dumas J, Carrington W, Fogarty K, Lifshitz L, Tuft R, Lambright D, Corvera S. Sequential roles for phosphatidylinositol 3-phosphate and Rab5 in tethering and fusion of early endosomes via their interaction with EEA1. J Biol Chem. 2002 Mar 08; 277(10):8611-7. PMID: 11602609.
      Citations: 64     Fields:    Translation:AnimalsCells
    62. Patki V, Buxton J, Chawla A, Lifshitz L, Fogarty K, Carrington W, Tuft R, Corvera S. Insulin action on GLUT4 traffic visualized in single 3T3-l1 adipocytes by using ultra-fast microscopy. Mol Biol Cell. 2001 Jan; 12(1):129-41. PMID: 11160828.
      Citations: 40     Fields:    Translation:AnimalsCells
    63. Corvera S, DiBonaventura C, Shpetner HS. Cell confluence-dependent remodeling of endothelial membranes mediated by cholesterol. J Biol Chem. 2000 Oct 06; 275(40):31414-21. PMID: 10903311.
      Citations: 14     Fields:    Translation:AnimalsCells
    64. Corvera S. Signal transduction: stuck with FYVE domains. Sci STKE. 2000 Jun 20; 2000(37):pe1. PMID: 11752593.
      Citations: 5     Fields:    Translation:HumansAnimalsCells
    65. Lawe DC, Patki V, Heller-Harrison R, Lambright D, Corvera S. The FYVE domain of early endosome antigen 1 is required for both phosphatidylinositol 3-phosphate and Rab5 binding. Critical role of this dual interaction for endosomal localization. J Biol Chem. 2000 Feb 04; 275(5):3699-705. PMID: 10652369.
      Citations: 77     Fields:    Translation:AnimalsCells
    66. Corvera S, D'Arrigo A, Stenmark H. Phosphoinositides in membrane traffic. Curr Opin Cell Biol. 1999 Aug; 11(4):460-5. PMID: 10449332.
      Citations: 57     Fields:    Translation:AnimalsCells
    67. Czech MP, Corvera S. Signaling mechanisms that regulate glucose transport. J Biol Chem. 1999 Jan 22; 274(4):1865-8. PMID: 9890935.
      Citations: 99     Fields:    Translation:AnimalsCells
    68. Corvera S, Czech MP. Direct targets of phosphoinositide 3-kinase products in membrane traffic and signal transduction. Trends Cell Biol. 1998 Nov; 8(11):442-6. PMID: 9854311.
      Citations: 43     Fields:    Translation:AnimalsCells
    69. Patki V, Lawe DC, Corvera S, Virbasius JV, Chawla A. A functional PtdIns(3)P-binding motif. Nature. 1998 Jul 30; 394(6692):433-4. PMID: 9697765.
      Citations: 76     Fields:    Translation:AnimalsCells
    70. Patki V, Virbasius J, Lane WS, Toh BH, Shpetner HS, Corvera S. Identification of an early endosomal protein regulated by phosphatidylinositol 3-kinase. Proc Natl Acad Sci U S A. 1997 Jul 08; 94(14):7326-30. PMID: 9207090.
      Citations: 79     Fields:    Translation:AnimalsCells
    71. Hartley D, Corvera S. Formation of c-Cbl.phosphatidylinositol 3-kinase complexes on lymphocyte membranes by a p56lck-independent mechanism. J Biol Chem. 1996 Sep 06; 271(36):21939-43. PMID: 8702998.
      Citations: 5     Fields:    Translation:HumansCells
    72. Shpetner H, Joly M, Hartley D, Corvera S. Potential sites of PI-3 kinase function in the endocytic pathway revealed by the PI-3 kinase inhibitor, wortmannin. J Cell Biol. 1996 Feb; 132(4):595-605. PMID: 8647891.
      Citations: 57     Fields:    Translation:HumansCells
    73. Hartley D, Meisner H, Corvera S. Specific association of the beta isoform of the p85 subunit of phosphatidylinositol-3 kinase with the proto-oncogene c-cbl. J Biol Chem. 1995 Aug 04; 270(31):18260-3. PMID: 7629144.
      Citations: 19     Fields:    Translation:HumansAnimalsCells
    74. Joly M, Kazlauskas A, Corvera S. Phosphatidylinositol 3-kinase activity is required at a postendocytic step in platelet-derived growth factor receptor trafficking. J Biol Chem. 1995 Jun 02; 270(22):13225-30. PMID: 7768921.
      Citations: 48     Fields:    Translation:HumansCells
    75. Corvera S, Chawla A, Chakrabarti R, Joly M, Buxton J, Czech MP. A double leucine within the GLUT4 glucose transporter COOH-terminal domain functions as an endocytosis signal. J Cell Biol. 1994 Sep; 126(6):1625. PMID: 8089191.
      Citations: 7     Fields:    Translation:Cells
    76. Corvera S, Chawla A, Chakrabarti R, Joly M, Buxton J, Czech MP. A double leucine within the GLUT4 glucose transporter COOH-terminal domain functions as an endocytosis signal. J Cell Biol. 1994 Aug; 126(4):979-89. PMID: 7519625.
      Citations: 32     Fields:    Translation:HumansAnimalsCells
    77. Joly M, Kazlauskas A, Fay FS, Corvera S. Disruption of PDGF receptor trafficking by mutation of its PI-3 kinase binding sites. Science. 1994 Feb 04; 263(5147):684-7. PMID: 8303278.
      Citations: 74     Fields:    Translation:HumansCells
    78. Czech MP, Chawla A, Woon CW, Buxton J, Armoni M, Tang W, Joly M, Corvera S. Exofacial epitope-tagged glucose transporter chimeras reveal COOH-terminal sequences governing cellular localization. J Cell Biol. 1993 Oct; 123(1):127-35. PMID: 8408193.
      Citations: 26     Fields:    Translation:AnimalsCells
    79. Chakrabarti R, Joly M, Corvera S. Redistribution of clathrin-coated vesicle adaptor complexes during adipocytic differentiation of 3T3-L1 cells. J Cell Biol. 1993 Oct; 123(1):79-87. PMID: 8408208.
      Citations: 4     Fields:    Translation:AnimalsCells
    80. Kapeller R, Chakrabarti R, Cantley L, Fay F, Corvera S. Internalization of activated platelet-derived growth factor receptor-phosphatidylinositol-3' kinase complexes: potential interactions with the microtubule cytoskeleton. Mol Cell Biol. 1993 Oct; 13(10):6052-63. PMID: 8413207.
      Citations: 40     Fields:    Translation:AnimalsCells
    81. Corvera S, Jaspers S, Pasceri M. Acute inhibition of insulin-stimulated glucose transport by the phosphatase inhibitor, okadaic acid. J Biol Chem. 1991 May 15; 266(14):9271-5. PMID: 1709166.
      Citations: 10     Fields:    Translation:AnimalsCells
    82. Corvera S. Insulin stimulates the assembly of cytosolic clathrin onto adipocyte plasma membranes. J Biol Chem. 1990 Feb 15; 265(5):2413-6. PMID: 2154445.
      Citations: 7     Fields:    Translation:AnimalsCells
    Corvera's Networks
    Click the
    Explore
    buttons for more information and interactive visualizations!
    Concepts (446)
    Explore
    _
    Co-Authors (36)
    Explore
    _
    Similar People (60)
    Explore
    _
    Same Department Expand Description
    Explore
    _
    Physical Neighbors
    _