Header Logo

Search Result Details

This page shows the details of why an item matched the keywords from your search.
One or more keywords matched the following properties of Kelliher, Michelle
PropertyValue
overview

Michelle Kelliher received her B.A. in Biology from Smith College and a M.S. degree in Biology from Yale University. She received her Ph.D. in Immunology from Tufts University Sackler School of Biomedical Sciences and completed her post-doctoral training in the Department of Genetics at Harvard Medical School. In 1998, Dr. Kelliher joined the UMMS Faculty and is currently a Professor in the Molecular, Cellular and Cancer Biology Department. Dr. Kelliher is a Scholar and Stohlman Scholar of the Leukemia and Lymphoma Society of America and a Sidney Kimmel Cancer Scholar.  Her research is supported by the NIH (NCI and NIAID), a Hyundai Hope Grant for Pediatric Cancers and an Alex’s Lemonade Stand Innovator Award.

Visit the Kelliher Lab website: http://labs.umassmed.edu/kelliherlab/

Mechanisms of Leukemogenesis

Genetically engineered mouse model (GEMM) of pediatric T-ALL

T cell acute lymphoblastic leukemia (T-ALL) is largely caused by the activation of TAL1, LMO1/2 and the NOTCH1 oncogenes. To model the disease in mice, we ectopically expressed the basic-helix-loop-helix (bHLH) transcription factor TAL1 and its binding partner LMO2 in developing mouse thymocytes. These transgenic mice develop T-ALL that resembles the human disease. We have shown that the DNA binding activity of TAL1 is not required to induce leukemia in mice and demonstrated that E2A or HEB heterozygosity accelerates TAL1-mediated disease (O’Neil et al., 2001; 2004).  These studies revealed that TAL1 transforms in part, by interfering with the E47/HEB bHLH heterodimer required for the expression of T cell differentiation genes (Figure?). In collaboration with the Look lab, we performed ChIP-seq analyses that demonstrated that TAL1 also participates in a TAL1-GATA3-RUNX1 autoregulatory loop that induces the expression of stem cell genes such as MYB in leukemia (Sanda et al., 2012).

Identifying cooperating oncogenes

We have used our GEMM and retroviral insertional mutagenesis (RIM) to identify genes that cooperate with TAL1 to cause leukemia in mice. The RIM screens revealed recurrent retroviral insertions in the Notch1, Myc and Ikaros loci (Sharma et al., 2006). Consistent with these data, NOTCH1 mutations were discovered in 54% of T-ALL patients and shown to develop spontaneously in our TAL1 transgenic mice (O’Neil et al., 2006). These mouse T-ALLs also express dominant-negative forms of Ikaros, indicating that Ikaros acts as a tumor suppressor in the disease. We then discovered that NOTCH1 contributes to leukemogenesis by directly regulating the expression of MYC (Sharma et al., 2006).

NOTCH1-MYC axis mediates L-IC activity

Leukemia-initiating cells (L-IC) are hypothesized to exhibit extensive proliferative and self-renewal capabilities and thereby mediate relapse. Using our GEMM of T-ALL, we identified the DN3 progenitor population as enriched in L-IC activity. Since NOTCH1 is important in thymic progenitor expansion, we hypothesized that the L-IC may depend on the NOTCH1-MYC pathway for their activity.  We found that treatment with a gamma-secretase inhibitor (GSI) which prevents NOTCH1 activation or the bromodomain 4 (BRD4) inhibitor JQ1, which targets MYC, significantly reduces or eliminates the L-IC population and prevents disease initiation (Tatarek et al., 2011; Roderick et al., 2014). These studies suggested that NOTCH and BRD4 inhibition may target the L-IC and prevent relapse.

Establishing patient-derived xenografts from relapsed pediatric T-ALL and ETP-ALL patients

To translate our findings to the human disease, we generated patient-derived xenografts (PDX) from pediatric T-ALL patients at the time of diagnosis and upon induction failure or relapse. We are using these models to study disease heterogeneity and to test the efficacy of combination targeted therapies. We found that GSI-JQ1 combination therapy was effective in vivo, significantly prolonging survival in PDX models of relapsed pediatric T-ALL (Knoechel et al., 2014).

We are one of a few labs world wide that have also successfully generated PDX models from patients with early thymic progenitor (ETP)-ALL, a particularly treatment resistant ALL subtype. In collaboration with the Letai laboratory, we demonstrated that ETP-ALL is uniquely BCL2-dependent and highly sensitive to treatment in vivo with the BCL2 inhibitor ABT-199 (Chongaile et al., 2014). Our current goals are to examine human L-IC activity in these models and to optimize lentiviral-mediated transduction and CRISPR/Cas9 screening in primary human leukemic cells.

 

RIP Kinases in Cell Death and Inflammation

My laboratory has had a long-standing interest in RIP Kinases and their role in TNF- and TRIF-dependent signaling.  We demonstrated that a RIPK1 deficiency in the mouse results in neonatal lethality due to extensive TNF-induced cell death and inflammation (Kelliher et al., 1998; Cusson et al 2002). We showed that RIPK1 is recruited to the TNF receptor 1 (Tnfr1) and the Toll-like receptors (TLR) 3 and 4 via the adapter TRIF and is stably ubiquitin-modified with K63-linked polyubiquitin chains (Meylan et al., 2004; Lee et al., 2004). We have since established that in addition to TNF-induced apoptosis, RIPK1 regulates a form of programmed necrosis called necroptosis. Necroptosis is thought to require the kinase activities of RIPK1, RIPK3 and MLKL (Figure?) and induces an inflammatory form of cell death. We provide genetic evidence that in the absence of RIPK1, tissues undergo apoptosis and RIPK3-mediated necroptosis. Unlike Ripk1-/- or Ripk1-/-Tnfr1-/- mice, which die during the postnatal period, Ripk1/Tnfr1/Ripk3 triple knock out mice survive to adulthood (Dillon et al., 2014). These in vivo studies demonstrate that RIPK1 is a master regulator of cell death and inflammation.

 

To identify the cell types and tissues that depend on RIPK1 for survival, we developed Ripk1 conditional mice and RIPK1 kinase inactive (D138N) mice.  These mouse models allow us to examine the role of RIPK1 in tissue homeostasis and inflammation. Our published work demonstrates critical survival roles for RIPK1 in the intestinal epithelium, keratinocytes and cells of the hematopoietic lineage (Dannappel, et al., 2014;Roderick et al., 2014). We also demonstrated that RIPK1D138N mice are completely protected from TNF-induced hypothermia and shock in vivo (Polykratis et al., 2014).  These studies indicate that RIP kinase-dependent necroptotic death mediates shock and may contribute to sepsis, raising the possibility that RIPK inhibitors may have clinical utility in these patients and in chronic inflammatory disease.

Post Docs

A postdoctoral position is available to study in this laboratory. Contact Dr. Kelliher for additional details.

Rotation Projects

Please visit the Kelliher Lab website at: http://labs.umassmed.edu/kelliherlab/ to learn more about our current research areas.

 

1. Identify genes/pathways that mediate leukemia-initiating cell survival

 

2. Understand the molecular basis of glucocorticoid resistance in leukemia

 

3. Examine contribution of RIPK1 kinase in inflammatory and autoimmune disease mouse models.

 

4.  Reveal tissue-specific roles for RIPK1 in cell death and inflammation. Use conditional Ripk1 allele to investigate effects of Ripk1       deletion in liver, pancreas and antigen presenting cells.

 

One or more keywords matched the following items that are connected to Kelliher, Michelle
Item TypeName
Academic Article Tal-1 induces T cell acute lymphoblastic leukemia accelerated by casein kinase IIalpha.
Academic Article The death domain kinase RIP mediates the TNF-induced NF-kappaB signal.
Academic Article Calorie restriction, stress and the ubiquitin-dependent pathway in mouse livers.
Academic Article The distinct roles of TRAF2 and RIP in IKK activation by TNF-R1: TRAF2 recruits IKK to TNF-R1 while RIP mediates IKK activation.
Academic Article The death domain kinase RIP is essential for TRAIL (Apo2L)-induced activation of IkappaB kinase and c-Jun N-terminal kinase.
Academic Article Aging, calorie restriction and ubiquitin-dependent proteolysis in the livers of Emory mice.
Academic Article Differences in oncogenic potency but not target cell specificity distinguish the two forms of the BCR/ABL oncogene.
Academic Article RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation.
Academic Article The kinase activity of Rip1 is not required for tumor necrosis factor-alpha-induced IkappaB kinase or p38 MAP kinase activation or for the ubiquitination of Rip1 by Traf2.
Academic Article TAL1/SCL induces leukemia by inhibiting the transcriptional activity of E47/HEB.
Academic Article Decreasing ascorbate intake does not affect the levels of glutathione, tocopherol or retinol in the ascorbate-requiring osteogenic disorder shionogi rats.
Academic Article RIP links TLR4 to Akt and is essential for cell survival in response to LPS stimulation.
Academic Article p16Ink4a or p19Arf loss contributes to Tal1-induced leukemogenesis in mice.
Academic Article Interferon regulatory factor 7 is activated by a viral oncoprotein through RIP-dependent ubiquitination.
Academic Article The Notch1/c-Myc pathway in T cell leukemia.
Academic Article Induction of a chronic myelogenous leukemia-like syndrome in mice with v-abl and BCR/ABL.
Academic Article Coordinated regulation of Toll-like receptor and NOD2 signaling by K63-linked polyubiquitin chains.
Academic Article RIP1 links inflammatory and growth factor signaling pathways by regulating expression of the EGFR.
Academic Article The DNA binding activity of TAL-1 is not required to induce leukemia/lymphoma in mice.
Academic Article NOD2, RIP2 and IRF5 play a critical role in the type I interferon response to Mycobacterium tuberculosis.
Academic Article A DNA-binding mutant of TAL1 cooperates with LMO2 to cause T cell leukemia in mice.
Academic Article A cytosolic ATM/NEMO/RIP1 complex recruits TAK1 to mediate the NF-kappaB and p38 mitogen-activated protein kinase (MAPK)/MAPK-activated protein 2 responses to DNA damage.
Academic Article Heme induces programmed necrosis on macrophages through autocrine TNF and ROS production.
Academic Article Core transcriptional regulatory circuit controlled by the TAL1 complex in human T cell acute lymphoblastic leukemia.
Academic Article The death domain kinase RIP protects thymocytes from tumor necrosis factor receptor type 2-induced cell death.
Academic Article TYK2-STAT1-BCL2 pathway dependence in T-cell acute lymphoblastic leukemia.
Academic Article RIP1-driven autoinflammation targets IL-1a independently of inflammasomes and RIP3.
Academic Article The TAL1 complex targets the FBXW7 tumor suppressor by activating miR-223 in human T cell acute lymphoblastic leukemia.
Academic Article NF-kappaB activation in premalignant mouse tal-1/scl thymocytes and tumors.
Academic Article The death domain kinase RIP1 is essential for tumor necrosis factor alpha signaling to p38 mitogen-activated protein kinase.
Academic Article Tpl2/cot signals activate ERK, JNK, and NF-kappaB in a cell-type and stimulus-specific manner.
Academic Article Rip1 mediates the Trif-dependent toll-like receptor 3- and 4-induced NF-{kappa}B activation but does not contribute to interferon regulatory factor 3 activation.
Academic Article Activating Notch1 mutations in mouse models of T-ALL.
Academic Article NFKB1 is a direct target of the TAL1 oncoprotein in human T leukemia cells.
Academic Article Notch1 contributes to mouse T-cell leukemia by directly inducing the expression of c-myc.
Academic Article NOD2 pathway activation by MDP or Mycobacterium tuberculosis infection involves the stable polyubiquitination of Rip2.
Academic Article Targeting the Notch1 and mTOR pathways in a mouse T-ALL model.
Academic Article Increased NOD2-mediated recognition of N-glycolyl muramyl dipeptide.
Academic Article Deletion-based mechanisms of Notch1 activation in T-ALL: key roles for RAG recombinase and a conserved internal translational start site in Notch1.
Academic Article The TLX1 oncogene drives aneuploidy in T cell transformation.
Academic Article Notch1 inhibition targets the leukemia-initiating cells in a Tal1/Lmo2 mouse model of T-ALL.
Academic Article Therapeutic targeting of the cyclin D3:CDK4/6 complex in T cell leukemia.
Academic Article ABL oncogenes directly stimulate two distinct target cells in bone marrow from 5-fluorouracil-treated mice.
Concept Blotting, Southern
Concept Genes, Lethal
Concept Sequence Analysis, DNA
Concept RNA, Small Interfering
Concept MAP Kinase Signaling System
Concept Software
Concept Tumor Suppressor Protein p14ARF
Concept Neoplastic Stem Cells
Concept Hematopoietic Stem Cell Transplantation
Concept Tumor Suppressor Protein p53
Concept Oncogenes
Concept Oxidative Stress
Concept Amyotrophic Lateral Sclerosis
Concept Cell Survival
Concept Receptors, Cell Surface
Concept Heat-Shock Response
Concept Genes, Dominant
Concept Transcription Initiation Site
Concept Amino Acid Sequence
Concept Stress, Physiological
Concept Suppression, Genetic
Concept Stroke
Concept NF-kappa B p50 Subunit
Concept Spectral Karyotyping
Concept T-Lymphocyte Subsets
Concept GTP-Binding Protein alpha Subunits, Gs
Concept Intracellular Signaling Peptides and Proteins
Concept Mycobacterium smegmatis
Concept HSP90 Heat-Shock Proteins
Concept Transgenes
Concept STAT Transcription Factors
Concept Organ Specificity
Concept Adjuvants, Immunologic
Concept Nod2 Signaling Adaptor Protein
Concept Sequence Deletion
Concept Organ Size
Concept Genes, Neoplasm
Concept Cell Separation
Concept Genes, p53
Concept Drug Synergism
Concept Receptor-Interacting Protein Serine-Threonine Kinases
Concept Signal Transduction
Concept Lymphocyte Specific Protein Tyrosine Kinase p56(lck)
Concept Immunologic Deficiency Syndromes
Concept Spinal Cord
Concept Superoxide Dismutase
Concept Hematopoietic Stem Cells
Concept High-Throughput Screening Assays
Concept Reactive Oxygen Species
Concept Protein Structure, Tertiary
Concept Adaptor Proteins, Signal Transducing
Concept Genes, Reporter
Concept Core Binding Factor Alpha 2 Subunit
Concept Core Binding Factor beta Subunit
Concept Genes, p16
Concept Protein Stability
Concept Second Messenger Systems
Concept Genome, Human
Concept Amyloid Precursor Protein Secretases
Concept Binding Sites
Concept Spheroids, Cellular
Concept Mice, SCID
Concept Gene Library
Concept Mice, Inbred Strains
Concept Genes, abl
Concept Extracellular Signal-Regulated MAP Kinases
Concept Macromolecular Substances
Concept Immunoglobulin Class Switching
Concept Spleen
Concept Rats, Mutant Strains
Concept Sequence Homology, Nucleic Acid
Concept Substrate Specificity
Concept Genome-Wide Association Study
Concept Sp1 Transcription Factor
Concept Systemic Inflammatory Response Syndrome
Concept STAT1 Transcription Factor
Concept Oligonucleotide Array Sequence Analysis
Concept Shock, Septic
Concept Cyclic S-Oxides
Concept Serine
Concept Sulfonamides
Concept Methicillin-Resistant Staphylococcus aureus
Concept Skin
Concept Nod1 Signaling Adaptor Protein
Concept Gene Silencing
Concept Base Sequence
Concept Alleles
Concept Mice, Mutant Strains
Concept Molecular Sequence Data
Concept Tumor Suppressor Proteins
Concept Receptor-Interacting Protein Serine-Threonine Kinase 2
Concept SUMO-1 Protein
Academic Article Activation of NOD receptors by Neisseria gonorrhoeae modulates the innate immune response.
Academic Article c-Myc inhibition prevents leukemia initiation in mice and impairs the growth of relapsed and induction failure pediatric T-ALL cells.
Academic Article An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia.
Academic Article Leukemia propagating cells Akt up.
Academic Article Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death.
Academic Article RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3.
Academic Article NOTCH1 inhibition in vivo results in mammary tumor regression and reduced mammary tumorsphere-forming activity in vitro.
Academic Article Cutting edge: RIPK1 Kinase inactive mice are viable and protected from TNF-induced necroptosis in vivo.
Award or Honor Receipt Leukemia and Lymphoma Society Special Fellow Award
Award or Honor Receipt Sidney Kimmel Cancer Scholar Award
Award or Honor Receipt Leukemia and Lymphoma Society Scholar Award
Award or Honor Receipt Leukemia and Lymphoma Society Stohlman Scholar Award
Award or Honor Receipt Member, Leukemia and Lymphoma Society Career Development Review Panel
Award or Honor Receipt Permanent Member, NIH Cancer Genetics Study Section
Academic Article Repression of BIM mediates survival signaling by MYC and AKT in high-risk T-cell acute lymphoblastic leukemia.
Academic Article Maturation stage of T-cell acute lymphoblastic leukemia determines BCL-2 versus BCL-XL dependence and sensitivity to ABT-199.
Academic Article RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer.
Academic Article RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis.
Academic Article Hematopoietic RIPK1 deficiency results in bone marrow failure caused by apoptosis and RIPK3-mediated necroptosis.
Academic Article Deletion of the gene encoding G0/G 1 switch protein 2 (G0s2) alleviates high-fat-diet-induced weight gain and insulin resistance, and promotes browning of white adipose tissue in mice.
Academic Article NEMO Prevents Steatohepatitis and Hepatocellular Carcinoma by Inhibiting RIPK1 Kinase Activity-Mediated Hepatocyte Apoptosis.
Academic Article NEMO Prevents RIP Kinase 1-Mediated Epithelial Cell Death and Chronic Intestinal Inflammation by NF-?B-Dependent and -Independent Functions.
Academic Article The Public Repository of Xenografts Enables Discovery and Randomized Phase II-like Trials in Mice.
Academic Article The TCA cycle transferase DLST is important for MYC-mediated leukemogenesis.
Academic Article CYLD Proteolysis Protects Macrophages from TNF-Mediated Auto-necroptosis Induced by LPS and Licensed by Type I IFN.
Academic Article RIPK1 and RIPK3 Kinases Promote Cell-Death-Independent Inflammation by Toll-like Receptor 4.
Academic Article RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS.
Academic Article High-Throughput Screening of Tyrosine Kinase Inhibitor Resistant Genes in CML.
Academic Article Mdm2 Phosphorylation Regulates Its Stability and Has Contrasting Effects on Oncogene and Radiation-Induced Tumorigenesis.
Academic Article CK2 inhibitor CX-4945 destabilizes NOTCH1 and synergizes with JQ1 against human T-acute lymphoblastic leukemic cells.
Academic Article The Public Repository of Xenografts Enables Discovery and Randomized Phase II-like Trials in Mice.
Academic Article Phosphorylation of the Mdm2 oncoprotein by the c-Abl tyrosine kinase regulates p53 tumor suppression and the radiosensitivity of mice.
Academic Article JAK/STAT pathway inhibition overcomes IL7-induced glucocorticoid resistance in a subset of human T-cell acute lymphoblastic leukemias.
Academic Article Kinase Activities of RIPK1 and RIPK3 Can Direct IFN-? Synthesis Induced by Lipopolysaccharide.
Academic Article RUNX1 is required for oncogenic Myb and Myc enhancer activity in T-cell acute lymphoblastic leukemia.
Academic Article ATACseqQC: a Bioconductor package for post-alignment quality assessment of ATAC-seq data.
Academic Article RIP kinase 1-dependent endothelial necroptosis underlies systemic inflammatory response syndrome.
Academic Article Dysfunctional intracellular calcium homoeostasis: a central cause of neurodegeneration in Alzheimer's disease.
Academic Article Oncogenic hijacking of the stress response machinery in T cell acute lymphoblastic leukemia.
Academic Article The pseudokinase MLKL activates PAD4-dependent NET formation in necroptotic neutrophils.
Academic Article NEMO Prevents Steatohepatitis and Hepatocellular Carcinoma by Inhibiting RIPK1 Kinase Activity-Mediated Hepatocyte Apoptosis.
Academic Article Dendritic Cell RIPK1 Maintains Immune Homeostasis by Preventing Inflammation and Autoimmunity.
Academic Article RIPK1 mediates a disease-associated microglial response in Alzheimer's disease.
Academic Article Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death.
Academic Article UFD1 contributes to MYC-mediated leukemia aggressiveness through suppression of the proapoptotic unfolded protein response.
Academic Article Elevated A20 promotes TNF-induced and RIPK1-dependent intestinal epithelial cell death.
Academic Article NOTCH1 Represses MCL-1 Levels in GSI-resistant T-ALL, Making them Susceptible to ABT-263.
Academic Article Analyzing Necroptosis Using an RIPK1 Kinase Inactive Mouse Model of TNF Shock.
Academic Article Connecting immune deficiency and inflammation.
Academic Article BET Bromodomain Proteins Function as Master Transcription Elongation Factors Independent of CDK9 Recruitment.
Academic Article BID-ding on necroptosis in MDS.
Academic Article NOTCH Signaling in T-Cell-Mediated Anti-Tumor Immunity and T-Cell-Based Immunotherapies.
Academic Article RIPK1 Mediates TNF-Induced Intestinal Crypt Apoptosis During Chronic NF-?B Activation.
Academic Article Ptpn6 inhibits caspase-8- and Ripk3/Mlkl-dependent inflammation.
Academic Article Sequential activation of necroptosis and apoptosis cooperates to mediate vascular and neural pathology in stroke.
Academic Article ESRRB regulates glucocorticoid gene expression in mice and patients with acute lymphoblastic leukemia.
Academic Article Prostaglandin E2 stimulates cAMP signaling and resensitizes human leukemia cells to glucocorticoid-induced cell death.
Academic Article T cell-derived tumor necrosis factor induces cytotoxicity by activating RIPK1-dependent target cell death.
Concept Superoxide Dismutase-1
Concept Heat Shock Transcription Factors
Concept Mice, 129 Strain
Concept High-Throughput Nucleotide Sequencing
Concept Nucleotide Motifs
Concept Transcriptome
Concept Receptors, Prostaglandin E, EP4 Subtype
Concept TOR Serine-Threonine Kinases
Concept Endoplasmic Reticulum Stress
Concept Myeloid Cell Leukemia Sequence 1 Protein
Academic Article Therapeutic targeting of LCK tyrosine kinase and mTOR signaling in T-cell acute lymphoblastic leukemia.
Academic Article TBK1 inhibition unleashes RIPK1, resensitizing tumors to immunotherapy.
Academic Article ZBP1 activation triggers hematopoietic stem and progenitor cell death resulting in bone marrow failure in mice.
Academic Article The role of quiescent thymic progenitors in TAL/LMO2-induced T-ALL chemotolerance.
Academic Article Targeting the GPI transamidase subunit GPAA1 abrogates the CD24 immune checkpoint in ovarian cancer.
Academic Article Identification of WNK1 as a therapeutic target to suppress IgH/MYC expression in multiple myeloma.
Academic Article Oncogenic dependency on SWI/SNF chromatin remodeling factors in T-cell acute lymphoblastic leukemia.
Academic Article CleanUpRNAseq: An R/Bioconductor Package for Detecting and Correcting DNA Contamination in RNA-Seq Data.
Academic Article Focal deletions of a promoter tether activate the IRX3 oncogene in T-cell acute lymphoblastic leukemia.
Search Criteria
  • Freund
  • s
  • Adjuvant