This page shows the details of why an item matched the keywords from your search.
Property | Value |
Rotation Projects
|
Rotation ProjectsProper control of cell division and accurate chromosome segregation are fundamental to cell function and normal development. Chromosome segregation errors lead to birth defects, and abnormal cell division control is associated with essentially all cancers. A major aim of research in the laboratory is to understand cell cycle control and chromosome segregation mechanisms. We use a combination of classical and molecular genetics, high-resolution in vivo imaging, and biochemical techniques to define pathways that control the cell cycle and chromosome segregation in response to environmental insult (DNA damaging agents) and developmental queues. Rotation projects focus on the role of cell cycle checkpoint and tumor suppressor pathways during the earliest stages of embryogenesis, and cell cycle control of actin and microtubule reorganization during mitosis. Through these projects, students gain exposure of the art in vivo imaging and genetic and molecular manipulations of gene function to define pathways controlling cell division and chromosome segregation. Embryonic PatterningEssentially all cells are asymmetric, with structurally distinct surfaces and polarized internal organization. This asymmetry is essential to the specialized functions cells serve within complex multi-cellular organisms . A second area of interest focuses on the mechanisms that establish cellular asymmetry. In Drosophila, the embryonic axes are specified during oogenesis through the asymmetric localization of key morphogenetic molecules within the developing oocyte. We use axis specification in the fly as a model for the processes that establish cellular asymmetry. An intact microtubule network is essential to axis specification in the fly oocyte and to polarization of somatic. We hope to define the molecular functions for microtubules in establishing cellular asymmetry. We are currently using in vivo imaging techniques to directly characterize the microtubule dependent mRNA transport processes that differentiate the anterior and posterior poles of the developing oocyte. In addition, classical genetic and biochemical techniques are used to identify the microtubule motors and associated proteins that mediate mRNA movements to the oocyte poles.
|