Header Logo

Search Result Details

This page shows the details of why an item matched the keywords from your search.
One or more keywords matched the following properties of Lian, Jane
PropertyValue
overview

Academic Background

Associate Professor of Biological Chemistry, Harvard Medical School, Boston

Senior Research Associate, Department of Orthopaedic Surgery, Children's Hospital Medical Center, Boston

Post-doctoral training: National Institutes of Health; Harvard Medical School, Children's Hospital.

Ph.D., Boston University School of Medicine

Molecular Mechanisms Regulating Skeletal Development and Metastasis of Cancer Cells to Bone

Bone tissue functions as a mechanically responsive structural component of the body and as a major organ essential for maintaining calcium and phosphate homeostasis. The skeleton is the target of numerous human genetic disorders and recently mouse models have identified new regulatory pathways that affect the skeleton. As a normal process of aging and hormonal changes after the menopause, skeletal mass can decrease by as much as 30% leading to bone fracture and compromised quality of life in the elderly population. Historically the laboratory has addressed molecular mechanisms regulating formation and mineralization of bone by osteoblasts and turnover of bone tissue by osteoclasts, the bone resorbing cells. We are defining the key regulatory events for the progressive differentiation of osteoprogenitor stem cells to osteogenic cells by identifying transcription factor complexes that control expression of tissue-specific genes. Our studies are showing that early events of skeletal development are recapitulated in the adult skeleton for the normal maintenance of bone mass.

The skeleton is also a target of metastatic cancers and recent studies from our laboratory and others are demonstrating that signaling pathways which mediate responsiveness of the bone forming and bone resorbing cells of the skeleton for organogenesis are also pathways that are activated in cancer cells which metastasize to bone.

Areas of current investigation for graduate and MD/PhD students and postdoctoral fellows include:

1.   Combinatorial Control Mechanisms for Skeletal Development

This laboratory is defining a regulatory network of developmental factors with a focus on three major pathways critical for skeletal pattern formation, early embryonic bone development, and osteoblast differentiation:  the bone morphogenetic protein (BMP) family, the Wnt signaling pathway and Hox homeodomain factors.  The integration of these signaling pathways for tissue-specific gene expression is being characterized for two genes, the transcription factor Runx2/Cbfa1 established as essential for skeletal development and a bone-specific Runx2 target gene, osteocalcin, that represents one of the major non-collagenous bone matrix proteins (Choi et al., 2001; Lengner et al., 2002).  The Runx2/Cbfa transcription factor is essential for osteogenic differentiation and functions as a master regulatory gene through multiple properties (Fig. 1). Runx2 can change the phenotype of a cell, e.g., from a non-osseous adipocyte to an osteoblast, as well as control recruitment of stem cells into the chondrogenic and osteogenic phenotype (Lengner et al., 2005).  Characterizing the functional activities of this protein has provided new paradigms for understanding gene regulation.  First, Runx2 expression is regulated in stem cells by early development cues including Hox genes, BMP/TGFb, and Wnt proteins (Balint et al., 2003, Zaidi et al., 2002; Gaur et al., 2005, 2006; Bodine et al., 2004).  Secondly, this transcription factor is a scaffolding protein that is targeted to specific subnuclear domains for the assembly of multimeric complexes on target genes (reviewed in Lian et al., 2004).  Third, Runx2 recruits chromatin remodeling proteins and assembles complexes at Runx2 regulatory elements in genes to either activate or repress gene transcription (Javed et al., 1999; Young et al., 2005).  By mutational analyses of different protein interacting domains of Runx2, we are identifying the coregulatory proteins essential for osteoblast differentiation in vitro and for skeletal development in vivo (Zaidi et al., 2004; Afzal et al., 2005). Experimental approaches include cell culture models for chondrocyte and osteoblast differentiation using human embryonic and mesenchymal stem cells, gene regulation studies and characterization of mouse phenotypes. 

2.  Tissue Specific Gene Regulatory Mechanisms

The osteocalcin gene encodes a calcium binding ECM protein that is developmentally regulated during bone formation by a plethora of hormones, growth factors, and cell signaling proteins involved in calcium homeostasis and bone remodeling. The integration of independent signals must converge on the promoter to account for complex physiologic control of the gene during bone formation and turnover. Thus, the promoter of the osteocalcin gene provides a molecular blueprint for understanding developmental and hormonal regulation of gene expression required for bone formation (Hassan et al., 2004; Javed et al., 1999; Gutierrez et al., 2004). Identification of tissue-specific regulatory sequences and their cognate binding factors have allowed us to develop strategies for cell based therapy to target therapeutic genes specifically to bone. Examples of osteocalcin tissue-specific regulatory elements undergoing characterization include the steroid response elements, runt homology (Runx/Cbfa), homeodomain (HD), Hox, C/EBP, ATF and AP-1 protein binding sites.  The HD proteins (Msx, Dlx) and Hoxa10 regulate osteocalcin at different stages of cell differentiation (Fig. 2). Transcriptional control of the gene is evaluated at multiple levels including chromatin modifications and recruitment of transcription factors and their coregulatory proteins by chromatin immunoprecipitation studies.  Enforced expression and siRNA knockdown studies of regulatory factors strategies are used to establish their function in vitro and in vivo using transgenic mouse models. Such analyses have revealed new insights into understanding the complex interplay of physiologic mediators of tissue differentiation. This program of research provides a student with fundamental techniques requisite for characterizing gene regulation and expression in a biological context.

3.  Cancer Cell Biology in the Bone Microenvironment

The end stage of breast and prostate cancer is metastasis to bone, with very poor prognosis with nearly 70% mortality within a year.  Cancer cells cause destruction of the bone, resulting in fractures and severe pain.  Understanding the mechanisms which induce metastasis of the primary cancer cell to the bone environment needs to be addressed.  We have identified high expression levels of the Runx2 transcription factor in metastatic breast and prostate cancer cell lines.  Runx target genes in the cancer cell include the entire class of matrix metalloproteinases characterized for their role in tissue invasion, the vascular endothelial growth factor, a potent angiogenic factor involved as a primary event in tumor growth and several cell growth and osteoblastic genes expressed in the bone environment that allow for tumor growth (Fig. 3) (Pratap et al., 2005).  The cancer cell responds to TGFb and BMP growth factors in the bone extracellular matrix and stimulates bone resorbing cells.  In recent studies, we have shown metastatic cancer cell lines in which Runx2 activity has been blocked through genetic mutations, that the osteolytic disease of breast cancer cells can be prevented in the mouse (Barnes et al., 2004; Javed et al., 2005). The presence of mutant Runx2 protein in metastatic cells inhibits cell invasion (in vitro assays) and genes associated with tumor growth (Fig. 3).  We are now turning our attention to mechanisms responsible for activation of Runx2 in the primary tumor that would lead to the metastatic event in vivo.  Experimental approaches include generation of human cancer cell lines with mutants of Runx2, assessing tumor growth by in vivo imaging of tumors in breast, prostate and bone tissues, and examining gene expression profiles of the tumors are assayed.

4.  Gene Therapy and Tissue Engineering for Skeletal Diseases

Genetic disorders of the skeleton require expression of the normal proteins, specifically in bone cells.   Here the osteocalcin gene promoter provides the appropriate method for targeting expressed genes to mature osteoblasts.  Using OC-EGFP mice, we are characterizing a population of mesenchymal stem cells from these mice that differentiate into bone cells expressing GFP in donor mice.  Numerous donor mice carrying mutated genes that mimic human genetic disorders are available for addressing the critical number of mesenchymal stem cells differentiated to osteoblasts that can provide a sufficient level of normal protein to correct the skeletal disorder.  A second example where tissue engineering is being developed relates to the problem of non-union fractures where scar tissue rather than new bone formation occurs.  By using autologous cells expressing osteogenic factors, bone formation can be induced.  Lastly, we are culturing human embryonic stem cells and promoting their differentiation to chondrogenic and osteogenic lineages and testing these in mouse models.  These powerful properties are being exploited for treatment of skeletal diseases that require rebuilding of skeletal tissue by promoting lineage allocation of stem cells or marrow progenitor cells. 

Figures

 Figure 1

 

  Lian Figure 1

 Figure 2

 

  Lian Figure 2
  

 Figure 3

 

  Lian Figure 3
  

 

One or more keywords matched the following items that are connected to Lian, Jane
Item TypeName
Academic Article Impaired intranuclear trafficking of Runx2 (AML3/CBFA1) transcription factors in breast cancer cells inhibits osteolysis in vivo.
Academic Article Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression.
Academic Article Secreted frizzled related protein 1 regulates Wnt signaling for BMP2 induced chondrocyte differentiation.
Academic Article Networks and hubs for the transcriptional control of osteoblastogenesis.
Academic Article HOXA10 controls osteoblastogenesis by directly activating bone regulatory and phenotypic genes.
Academic Article Cooperation between p27 and p107 during endochondral ossification suggests a genetic pathway controlled by p27 and p130.
Academic Article Ajulemic acid, a nonpsychoactive cannabinoid acid, suppresses osteoclastogenesis in mononuclear precursor cells and induces apoptosis in mature osteoclast-like cells.
Academic Article Structural coupling of Smad and Runx2 for execution of the BMP2 osteogenic signal.
Academic Article Expression of secreted frizzled related protein 1, a Wnt antagonist, in brain, kidney, and skeleton is dispensable for normal embryonic development.
Academic Article Elastomeric high-mineral content hydrogel-hydroxyapatite composites for orthopedic applications.
Academic Article The osteogenic transcription factor Runx2 regulates components of the fibroblast growth factor/proteoglycan signaling axis in osteoblasts.
Academic Article The osteogenic transcription factor runx2 controls genes involved in sterol/steroid metabolism, including CYP11A1 in osteoblasts.
Academic Article A network connecting Runx2, SATB2, and the miR-23a~27a~24-2 cluster regulates the osteoblast differentiation program.
Academic Article Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1.
Academic Article Epigenetic regulation of early osteogenesis and mineralized tissue formation by a HOXA10-PBX1-associated complex.
Academic Article Runx2 protein expression utilizes the Runx2 P1 promoter to establish osteoprogenitor cell number for normal bone formation.
Academic Article MicroRNA control of bone formation and homeostasis.
Academic Article The core-binding factor beta subunit is required for bone formation and hematopoietic maturation.
Academic Article Cbfbeta interacts with Runx2 and has a critical role in bone development.
Academic Article MicroRNA functions in osteogenesis and dysfunctions in osteoporosis.
Academic Article Pin1-mediated Runx2 modification is critical for skeletal development.
Academic Article Runx1/AML1 hematopoietic transcription factor contributes to skeletal development in vivo.
Academic Article Temporal and spatial parameters of skeletal gene expression: targeting RUNX factors and their coregulatory proteins to subnuclear domains.
Academic Article The Wnt antagonist secreted frizzled-related protein-1 is a negative regulator of trabecular bone formation in adult mice.
Academic Article Regulatory controls for osteoblast growth and differentiation: role of Runx/Cbfa/AML factors.
Academic Article Fidelity of Runx2 activity in breast cancer cells is required for the generation of metastases-associated osteolytic disease.
Academic Article The tyrosine phosphatase, OST-PTP, is expressed in mesenchymal progenitor cells early during skeletogenesis in the mouse.
Academic Article The bone-related Zn finger transcription factor Osterix promotes proliferation of mesenchymal cells.
Academic Article BMP2 commitment to the osteogenic lineage involves activation of Runx2 by DLX3 and a homeodomain transcriptional network.
Academic Article Sustained and localized in vitro release of BMP-2/7, RANKL, and tetracycline from FlexBone, an elastomeric osteoconductive bone substitute.
Academic Article Enhanced fracture repair by leukotriene antagonism is characterized by increased chondrocyte proliferation and early bone formation: a novel role of the cysteinyl LT-1 receptor.
Academic Article Dicer inactivation in osteoprogenitor cells compromises fetal survival and bone formation, while excision in differentiated osteoblasts increases bone mass in the adult mouse.
Academic Article Pbx1 represses osteoblastogenesis by blocking Hoxa10-mediated recruitment of chromatin remodeling factors.
Academic Article Suberoylanilide hydroxamic acid (SAHA; vorinostat) causes bone loss by inhibiting immature osteoblasts.
Academic Article A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2.
Academic Article Resolution of inflammation induces osteoblast function and regulates the Wnt signaling pathway.
Academic Article In vivo impact of Dlx3 conditional inactivation in neural crest-derived craniofacial bones.
Academic Article Redefining the activity of a bone-specific transcription factor: novel insights for understanding bone formation.
Concept Osteogenesis
Academic Article Genomic occupancy of Runx2 with global expression profiling identifies a novel dimension to control of osteoblastogenesis.
Academic Article Epigenetic landscape during osteoblastogenesis defines a differentiation-dependent Runx2 promoter region.
Academic Article Runx2 is required for early stages of endochondral bone formation but delays final stages of bone repair in Axin2-deficient mice.
Academic Article Runx2/DICER/miRNA Pathway in Regulating Osteogenesis.
Academic Article WWOX and p53 Dysregulation Synergize to Drive the Development of Osteosarcoma.
Academic Article Chromatin dynamics regulate mesenchymal stem cell lineage specification and differentiation to osteogenesis.
Academic Article Regulation of Bone Metabolism by Serotonin.
Academic Article Regulation of osteogenesis by long noncoding RNAs: An epigenetic mechanism contributing to bone formation.
Academic Article Ethyl acetate and n-butanol fraction of Cissus quadrangularis promotes the mineralization potential of murine pre-osteoblast cell line MC3T3-E1 (sub-clone 4).
Academic Article Osteogenic potential of hexane and dichloromethane fraction of Cissus quadrangularis on murine preosteoblast cell line MC3T3-E1 (subclone 4).
Academic Article Mesenchymal stem cells overexpressing BMP-9 by CRISPR-Cas9 present high in vitro osteogenic potential and enhance in vivo bone formation.
Academic Article LncMIR181A1HG is a novel chromatin-bound epigenetic suppressor of early stage osteogenic lineage commitment.
Academic Article MicroRNA-101a enhances trabecular bone accrual in male mice.
Academic Article Sustained Morphine Delivery Suppresses Bone Formation and Alters Metabolic and Circulating miRNA Profiles in Male C57BL/6J Mice.
Academic Article LINC01638 sustains human mesenchymal stem cell self-renewal and competency for osteogenic cell fate.
Academic Article The effect of osteoclasts on epigenetic regulation by long non-coding RNAs in osteoblasts grown on titanium with nanotopography.
Search Criteria
  • Osteogenesis