This page shows the details of why an item matched the keywords from your search.
One or more keywords matched the following properties of
Harris, John
Property | Value |
Rotation Projects
|
Rotations:
-
Targeting the IFN-g-chemokine axis for treatment of vitiligo: We are using our newly developed mouse model and human tissues from patients with vitiligo to identify the cytokines and chemokines that are expressed within the depigmenting skin and which skin cells produce them. We are using genetically modified mouse strains (knockouts, conditional knockouts, fluorescent reporter strains), and cytokine and chemokine neutralizing antibodies to identify the key proteins required for disease. This data will permit us to rationally develop and test new therapeutic agents.
-
Understanding the proinflammatory signals generated by melanocytes under cellular stress. Melanocytes from vitiligo patients have intrinsic abnormalities, including cellular stress evidenced by increased production of reactive oxygen species (ROS) and activation of the unfolded protein response (UPR). The immune system has evolved to recognize this stress as damage-associated molecular patterns (DAMPs), which activate innate immunity. We are using human cells and tissues to determine how cellular stress, innate immunity, and adaptive immunity cooperate to initiate and perpetuate depigmentation in vitiligo.
-
Developing a humanized mouse model of immune-skin interactions to serve as a pre-clinical bridge to clinical studies: We are developing a humanized mouse model of skin disease that consists of an immunodeficient mouse strain as a host for an autologous human skin graft and immune reconstitution in order to study mechanisms of inflammation in the skin, including allergic contact dermatitis, response to infection, tumor immunotherapy, and autoimmunity, all within a fully human environment. This model system will act as a pre-clinical bridge between mouse models and human clinical trials, providing an opportunity to test new treatments on human cells and tissues prior to initiating trials on patients.
-
Tracking autoreactive T cell interactions within the skin: We are using fluorescently tagged CD8 T cells to track their cellular interactions within the skin using confocal microscopy. Future studies will adapt this model to investigate real-time migration and other movements of these cells within compartments of the skin.
-
Clinical trial to test a novel treatment for vitiligo: We recently completed a clinical trial based on insights developed from our animal data to test a novel drug for its ability to treat vitiligo.
|
Rotation Projects
|
Rotations:- Targeting the IFN-?-chemokine axis for treatment of vitiligo: We are using our newly developed mouse model and human tissues from patients with vitiligo to identify the cytokines and chemokines that are expressed within the depigmenting skin and which skin cells produce them. We are using genetically modified mouse strains (knockouts, conditional knockouts, fluorescent reporter strains), and cytokine and chemokine neutralizing antibodies to identify the key proteins required for disease. This data will permit us to rationally develop and test new therapeutic agents.
- Understanding the proinflammatory signals generated by melanocytes under cellular stress. Melanocytes from vitiligo patients have intrinsic abnormalities, including cellular stress evidenced by increased production of reactive oxygen species (ROS) and activation of the unfolded protein response (UPR). The immune system has evolved to recognize this stress as damage-associated molecular patterns (DAMPs), which activate innate immunity. We are using human cells and tissues to determine how cellular stress, innate immunity, and adaptive immunity cooperate to initiate and perpetuate depigmentation in vitiligo.
- Developing a humanized mouse model of immune-skin interactions to serve as a pre-clinical bridge to clinical studies: We are developing a humanized mouse model of skin disease that consists of an immunodeficient mouse strain as a host for an autologous human skin graft and immune reconstitution in order to study mechanisms of inflammation in the skin, including allergic contact dermatitis, response to infection, tumor immunotherapy, and autoimmunity, all within a fully human environment. This model system will act as a pre-clinical bridge between mouse models and human clinical trials, providing an opportunity to test new treatments on human cells and tissues prior to initiating trials on patients.
- Tracking real-time autoreactive T cell migration and interactions within the skin: We are using fluorescently/bioluminescently tagged CD8 T cells to track their movements and interactions within the skin in live mice, using real-time confocal microscopy and bioluminescent imaging. Initial studies will focus on the role of cytokines and chemokines in T cell migration within the skin.
- Clinical trial to test a novel treatment for vitiligo: We are in the early stages of developing a clinical trial based on insights developed from our animal data to test a novel drug for its ability to treat vitiligo.
|