Header Logo

Search Result Details

This page shows the details of why an item matched the keywords from your search.
One or more keywords matched the following properties of Craig, Roger
PropertyValue
overview

Molecular Structure, Dynamics, and Contractile Mechanism of Muscle

We use state-of-the-art electron microscopic techniques to understand how muscles contract. By studying the molecular structures of the actin and myosin filaments, whose interaction is responsible for contraction, we can elucidate the molecular mechanism of force generation and the processes responsible for regulating contraction. We are investigating systems as diverse as the rapidly contracting striated muscles of the skeleton and heart, and the smooth muscles of the internal organs (e.g. blood vessels), which are specialized to contract slowly and to maintain tension over long periods of time. These studies are adding to our basic understanding of muscle function, and also providing a structural basis for understanding muscle diseases caused by malfunction in the actin or myosin filaments.

Techniques: high resolution electron microscopy, 3D reconstruction, and atomic fitting

To decipher these filament structures in three dimensions at the molecular level, we use high resolution electron microscopy combined with computer image reconstruction. Specimens are observed by negative staining or cryo-electron microscopy, and 3D reconstructions of filaments are computed using helical or single particle methods. Atomic level detail is achieved by computationally 'fitting' atomic structures of filament subunits into the reconstruction. To study dynamic changes in filament structure that occur in active muscle, we have developed methods for capturing transient structural intermediates on the millisecond time scale for observation by EM.

Myosin filaments

Using these approaches we have recently achieved a major breakthrough in defining the 3D configuration of the key energy-transducing molecules, the myosin heads, on the surface of striated muscle myosin filaments (Woodhead et al., 2005). These results show for the first time, and in atomic detail, how myosin molecules are switched 'off', bringing about relaxation of muscle. The results suggest that the structure we observe is common to muscles of animals throughout most of the animal kingdom, and they provide a basis for understanding how these filaments are activated in contracting muscle. Our results also reveal for the first time how the tails of the myosin molecules are packed into the backbone of the thick filament, forming small 'subfilaments' that themselves assemble to form the thick filament core. This provides key background information for understanding how myosin filaments assemble in the cell.

Actin filaments

We have also made the first direct observations of how the protein tropomyosin, on the actin filament, regulates contraction by sterically blocking sites of myosin head attachment on actin filaments (Lehman et al., 1994; Xu et al., 1999; Pirani et al., 2005). We are currently determining the organization of the Ca2+-sensitive regulatory complex, troponin, on the thin filament, and how this changes on Ca2+ activation. These studies are revealing in atomic detail the molecular dynamics regulating muscle contraction.

Smooth muscle

In addition to our work on striated muscle, we have also shown that the myosin filaments of smooth muscle have a unique 'side-polar' structure, different from the helical organization in striated muscle. This structure helps to explain the characteristic ability of smooth muscles to undergo high degrees of shortening (Xu et al., 1996). Actin filaments from smooth muscle also differ from those in striated muscle, and we have gained new insights into their functioning in terms of the organization of their associated regulatory proteins (Hodgkinson et al., 1997; Lehman et al., 1997).

Current studies

We are currently determining the head organization in striated muscle myosin filaments from several key organisms, to test the generality of our model of the off state, and to determine whether subfilaments are a common feature of different species. We are imaging filaments at higher resolution to determine further details of their structure, and are carrying out tomographic studies of smooth muscle filaments to determine the three-dimensional details of their side-polar structure. In our studies of thin filaments, we are developing new methods of 3D reconstruction to reveal further details of the organization of troponin on actin, and we are combining the reconstructions with crystallographic structures of the thin filament components to produce a 3D thin filament model at the atomic level.

 

Myosin figure
 
Figure 1. 3D reconstruction and atomic fitting of (thick) myosin filament (from Woodhead et al., 2005). Left: 3D reconstruction showing arrangement of myosin heads on filament surface, and subfilaments running parallel to axis in filament backbone. Right: fitting of atomic structure of myosin heads (space-filling colored balls) into reconstruction of one pair of heads. The fitting reveals that the two heads interact with each other, preventing interaction with actin and thereby switching contraction off.
 

Actin figure

Figure 2. 3D reconstruction and atomic fitting of thin filament. Left: 3D reconstruction based on cryo images of thin filaments (from Xu et al., 1999). Actin in gold, tropomyosin in red (myosin blocking position), and green (non-blocking position). Right: fitting of actin atomic structure (yellow, α-carbon chain) into reconstruction of one actin subunit (blue wire). Highlighted in orange are amino acid clusters on actin that are blocked by tropomyosin in blocking position (white arrow). From Vibert et al., 1997.

Rotation Projects

Potential Rotation Projects

Project #1: Lipid-Layer Protein Crystallization for Electron Microscopy.While individual protein molecules can be readily visualized by EM, structural information is greatly enhanced if the molecules can by crystallized into 2-dimensional ordered arrays. Methods for achieving this are well established, making use of lipid monolayers at an air-water interface.

  1. Follow literature methods to crystallize "standard" proteins using the lipid-layer method.
  2. Observe results by electron microscopy following negative staining.
  3. If time permits, carry out preliminary image processing of micrographs and/or crystallization of unknown proteins. Techniques to be learned: lipid layer crystallization methods; grid preparation; use of electron microscope; image processing.
One or more keywords matched the following items that are connected to Craig, Roger
Item TypeName
Academic Article Functional analysis of Tpr: identification of nuclear pore complex association and nuclear localization domains and a role in mRNA export.
Academic Article Crossbridge and tropomyosin positions observed in native, interacting thick and thin filaments.
Academic Article The ultrastructural basis of actin filament regulation.
Academic Article The troponin tail domain promotes a conformational state of the thin filament that suppresses myosin activity.
Academic Article Capturing time-resolved changes in molecular structure by negative staining.
Academic Article An atomic model for actin binding by the CH domains and spectrin-repeat modules of utrophin and dystrophin.
Academic Article Heterogeneity of Z-band structure within a single muscle sarcomere: implications for sarcomere assembly.
Academic Article Drosophila muscle regulation characterized by electron microscopy and three-dimensional reconstruction of thin filament mutants.
Academic Article Helical order in tarantula thick filaments requires the "closed" conformation of the myosin head.
Academic Article Mini-thin filaments regulated by troponin-tropomyosin.
Academic Article Protection from cell death by mcl-1 is mediated by membrane hyperpolarization induced by K(+) channel activation.
Academic Article Single particle analysis of relaxed and activated muscle thin filaments.
Academic Article E93K charge reversal on actin perturbs steric regulation of thin filaments.
Academic Article Atomic model of a myosin filament in the relaxed state.
Academic Article An atomic model of the thin filament in the relaxed and Ca2+-activated states.
Academic Article A comparison of muscle thin filament models obtained from electron microscopy reconstructions and low-angle X-ray fibre diagrams from non-overlap muscle.
Academic Article The tip of the coiled-coil rod determines the filament formation of smooth muscle and nonmuscle myosin.
Academic Article Structural basis for the regulation of muscle contraction by troponin and tropomyosin.
Academic Article Blebbistatin stabilizes the helical order of myosin filaments by promoting the switch 2 closed state.
Academic Article Ca2+ -induced tropomyosin movement in scallop striated muscle thin filaments.
Academic Article Head-head interaction characterizes the relaxed state of Limulus muscle myosin filaments.
Academic Article The tail binds to the head-neck domain, inhibiting ATPase activity of myosin VIIA.
Academic Article Electron microscopy and three-dimensional reconstruction of native thin filaments reveal species-specific differences in regulatory strand densities.
Academic Article Isolation, electron microscopy and 3D reconstruction of invertebrate muscle myofilaments.
Academic Article Mass determination of native smooth muscle myosin filaments by scanning transmission electron microscopy.
Academic Article Ca2+ causes release of myosin heads from the thick filament surface on the milliseconds time scale.
Academic Article Molecular structure and organization of filaments in single, skinned smooth muscle cells.
Academic Article Protein switches in muscle contraction.
Academic Article Modes of caldesmon binding to actin: sites of caldesmon contact and modulation of interactions by phosphorylation.
Academic Article An open or closed case for the conformation of calponin homology domains on F-actin?
Academic Article The structure of the vertebrate striated muscle thin filament: a tribute to the contributions of Jean Hanson.
Academic Article Structure and function of myosin filaments.
Academic Article The globular tail domain of myosin Va functions as an inhibitor of the myosin Va motor.
Academic Article The globular tail domain puts on the brake to stop the ATPase cycle of myosin Va.
Academic Article Three-dimensional structure of vertebrate cardiac muscle myosin filaments.
Academic Article Head-head and head-tail interaction: a general mechanism for switching off myosin II activity in cells.
Academic Article Millisecond time-resolved changes occurring in Ca2+-regulated myosin filaments upon relaxation.
Academic Article Understanding the organisation and role of myosin binding protein C in normal striated muscle by comparison with MyBP-C knockout cardiac muscle.
Academic Article Three-dimensional reconstruction of tarantula myosin filaments suggests how phosphorylation may regulate myosin activity.
Academic Article Tropomyosin and the steric mechanism of muscle regulation.
Academic Article Analysis of tarantula skeletal muscle protein sequences and identification of transcriptional isoforms.
Academic Article Structural basis for the activation of muscle contraction by troponin and tropomyosin.
Academic Article The C terminus of cardiac troponin I stabilizes the Ca2+-activated state of tropomyosin on actin filaments.
Academic Article Mechanism of the Ca?+-dependent interaction between S100A4 and tail fragments of nonmuscle myosin heavy chain IIA.
Academic Article Tropomyosin position on F-actin revealed by EM reconstruction and computational chemistry.
Academic Article Electron microscopy and 3D reconstruction of F-actin decorated with cardiac myosin-binding protein C (cMyBP-C).
Academic Article Direct visualization of myosin-binding protein C bridging myosin and actin filaments in intact muscle.
Academic Article A molecular model of phosphorylation-based activation and potentiation of tarantula muscle thick filaments.
Academic Article Structural basis of the relaxed state of a Ca2+-regulated myosin filament and its evolutionary implications.
Academic Article Cardiac myosin binding protein-C plays no regulatory role in skeletal muscle structure and function.
Concept Disease Models, Animal
Concept Mice, Inbred mdx
Concept Troponin C
Concept Subcellular Fractions
Concept Papain
Concept Imaging, Three-Dimensional
Concept Software
Concept Muscle Proteins
Concept Rana catesbeiana
Concept Ultraviolet Rays
Concept Cryopreservation
Concept Mitochondria
Concept Myosin Subfragments
Concept Utrophin
Concept HeLa Cells
Concept Cell Nucleus
Concept Cell Division
Concept Calmodulin-Binding Proteins
Concept Actins
Concept Gene Expression
Concept Drosophila melanogaster
Concept Myosins
Concept COS Cells
Concept Membrane Potentials
Concept DNA, Complementary
Concept Disease Progression
Concept Disulfides
Concept Dictyostelium
Concept Turkey
Concept Cricetinae
Concept Potassium
Concept Negative Staining
Concept Tropomyosin
Concept Dogs
Concept Myosin Heavy Chains
Concept Computer Simulation
Concept Carrier Proteins
Concept Smooth Muscle Myosins
Concept Adenosine Triphosphate
Concept Amino Acid Sequence
Concept Nuclear Envelope
Concept Sea Anemones
Concept Myocytes, Cardiac
Concept Calcium
Concept Troponin
Concept Cyclic AMP-Dependent Protein Kinases
Concept Ethylmaleimide
Concept CHO Cells
Concept Blotting, Western
Concept Sarcomeres
Concept Myosin Light Chains
Concept Gastric Mucosa
Concept Heart Failure
Concept Genetic Predisposition to Disease
Concept Protein Interaction Domains and Motifs
Concept Tumor Cells, Cultured
Concept Genes, bcl-2
Concept DNA Primers
Concept Diastole
Concept Myosin Type II
Concept Mitogen-Activated Protein Kinase 3
Concept Nitrogen
Concept Spectrin
Concept Pacemaker, Artificial
Concept Static Electricity
Concept Patch-Clamp Techniques
Concept Exons
Concept Hot Temperature
Concept Cattle
Concept Fourier Analysis
Concept Computational Biology
Concept Light
Concept Phosphates
Concept Myofibrils
Concept Tissue Preservation
Concept Chickens
Concept Drosophila
Concept Ventricular Dysfunction, Left
Concept Turkeys
Concept Cardiomyopathy, Hypertrophic
Concept Escherichia coli
Concept History, 20th Century
Concept Egtazic Acid
Concept Dystrophin
Concept Hydrolyzable Tannins
Concept Acrylamide
Concept Epithelium
Concept Proto-Oncogene Proteins c-myc
Concept Myosin Type V
Concept Etoposide
Concept Bufo marinus
Concept Expressed Sequence Tags
Concept Catalytic Domain
Concept Ventricular Myosins
Concept Dyneins
Concept Antibodies, Monoclonal
Concept DNA Damage
Concept Liposomes
Concept Cell Membrane
Concept Magnesium
Concept Crystallography, X-Ray
Concept Mesocricetus
Concept Green Fluorescent Proteins
Concept Troponin T
Concept Calcium-Binding Proteins
Concept Cross-Linking Reagents
Concept Cytoskeleton
Concept Actinin
Concept Gelsolin
Concept Fluorides
Concept Freezing
Concept Actomyosin
Concept Calcium Signaling
Concept Leukemia, Myeloid, Acute
Concept Microfilament Proteins
Concept Dose-Response Relationship, Radiation
Concept Sequence Homology, Amino Acid
Concept Staining and Labeling
Concept Image Processing, Computer-Assisted
Concept Apyrase
Concept Computer Graphics
Concept Ions
Concept Cell Migration Assays
Concept Proteomics
Concept Cell Line
Concept Adenosine Triphosphatases
Concept Ca(2+) Mg(2+)-ATPase
Concept Muscle Fibers, Slow-Twitch
Concept Freeze Substitution
Concept Molecular Motor Proteins
Concept Cardiomyopathy, Dilated
Concept Cardiac Myosins
Concept Promoter Regions, Genetic
Concept Muscle Fibers, Fast-Twitch
Concept Base Sequence
Concept Amino Acid Motifs
Concept Immunohistochemistry
Concept Actin Cytoskeleton
Concept Molecular Sequence Data
Concept Electron Microscope Tomography
Concept Troponin I
Academic Article Structural changes induced in scallop heavy meromyosin molecules by Ca2+ and ATP.
Academic Article Structure of the myosin filaments of relaxed and rigor vertebrate striated muscle studied by rapid freezing electron microscopy.
Academic Article Electron microscopy of the actin-myosin head complex in the presence of ATP.
Academic Article Direct determination of myosin filament symmetry in scallop striated adductor muscle by rapid freezing and freeze substitution.
Academic Article Caldesmon and the structure of vertebrate smooth muscle thin filaments. A minireview.
Academic Article Caldesmon and the structure of smooth muscle thin filaments: electron microscopy of isolated thin filaments.
Academic Article Myosin filaments isolated from skinned amphibian smooth muscle cells are side-polar.
Academic Article Gene transfer by lipofection in rabbit and human secretory epithelial cells.
Academic Article Structural changes induced in Ca2+-regulated myosin filaments by Ca2+ and ATP.
Academic Article Caldesmon and the structure of smooth muscle thin filaments: immunolocalization of caldesmon on thin filaments.
Academic Article Structural changes accompanying phosphorylation of tarantula muscle myosin filaments.
Academic Article Steric-blocking by tropomyosin visualized in relaxed vertebrate muscle thin filaments.
Academic Article Mcl-1, a member of the Bcl-2 family, delays apoptosis induced by c-Myc overexpression in Chinese hamster ovary cells.
Academic Article Ca(2+)-induced tropomyosin movement in Limulus thin filaments revealed by three-dimensional reconstruction.
Academic Article Tropomyosin positions in regulated thin filaments revealed by cryoelectron microscopy.
Academic Article Three-dimensional reconstruction of thin filaments containing mutant tropomyosin.
Academic Article Exon skipping in Mcl-1 results in a bcl-2 homology domain 3 only gene product that promotes cell death.
Academic Article Mechanism of phosphorylation of the regulatory light chain of myosin from tarantula striated muscle.
Academic Article Purification of native myosin filaments from muscle.
Academic Article Different head environments in tarantula thick filaments support a cooperative activation process.
Academic Article Structure, sarcomeric organization, and thin filament binding of cardiac myosin-binding protein-C.
Academic Article Myosin-binding protein C displaces tropomyosin to activate cardiac thin filaments and governs their speed by an independent mechanism.
Academic Article Three-dimensional organization of troponin on cardiac muscle thin filaments in the relaxed state.
Academic Article Orientation of myosin binding protein C in the cardiac muscle sarcomere determined by domain-specific immuno-EM.
Academic Article Through Thick and Thin--Interfilament Communication in Muscle.
Academic Article An invertebrate smooth muscle with striated muscle myosin filaments.
Academic Article Pacemaker-induced transient asynchrony suppresses heart failure progression.
Academic Article An approach to improve the resolution of helical filaments with a large axial rise and flexible subunits.
Academic Article The cMyBP-C HCM variant L348P enhances thin filament activation through an increased shift in tropomyosin position.
Academic Article Phosphorylation and calcium antagonistically tune myosin-binding protein C's structure and function.
Academic Article The bcl-2 gene family.
Academic Article Modulation of striated muscle contraction by binding of myosin binding protein C to actin.
Academic Article Myosin-binding protein C corrects an intrinsic inhomogeneity in cardiac excitation-contraction coupling.
Academic Article Phosphorylation of cardiac myosin binding protein C releases myosin heads from the surface of cardiac thick filaments.
Academic Article Skeletal myosin binding protein-C isoforms regulate thin filament activity in a Ca2+-dependent manner.
Academic Article Interacting-heads motif has been conserved as a mechanism of myosin II inhibition since before the origin of animals.
Academic Article Molecular structure of muscle filaments determined by electron microscopy.
Academic Article Altered C10 domain in cardiac myosin binding protein-C results in hypertrophic cardiomyopathy.
Academic Article The central role of the tail in switching off 10S myosin II activity.
Academic Article Lattice arrangement of myosin filaments correlates with fiber type in rat skeletal muscle.
Academic Article The mesa trail and the interacting heads motif of myosin II.
Academic Article The myosin interacting-heads motif present in live tarantula muscle explains tetanic and posttetanic phosphorylation mechanisms.
Academic Article Getting into the thick (and thin) of it.
Academic Article Cryo-EM structure of the inhibited (10S) form of myosin II.
Academic Article Relaxed tarantula skeletal muscle has two ATP energy-saving mechanisms.
Academic Article The N terminus of myosin-binding protein C extends toward actin filaments in intact cardiac muscle.
Academic Article Amino terminus of cardiac myosin binding protein-C regulates cardiac contractility.
Academic Article Fast skeletal myosin-binding protein-C regulates fast skeletal muscle contraction.
Academic Article Structural basis of the super- and hyper-relaxed states of myosin II.
Concept S100 Calcium-Binding Protein A4
Concept Protein Domains
Concept Molecular Docking Simulation
Concept Connectin
Academic Article Interacting-heads motif explains the X-ray diffraction pattern of relaxed vertebrate skeletal muscle.
Academic Article Variants of the myosin interacting-heads motif.
Academic Article Dilated cardiomyopathy mutation E525K in human beta-cardiac myosin stabilizes the interacting-heads motif and super-relaxed state of myosin.
Academic Article Cryo-EM structure of the human cardiac myosin filament.
Academic Article The structural and functional integrities of porcine myocardium are mostly preserved by cryopreservation.
Academic Article Cryo-EM structure of the human cardiac myosin filament.
Academic Article Dominant myosin storage myopathy mutations disrupt striated muscles in Drosophila and the myosin tail-tail interactome of human cardiac thick filaments.
Search Criteria
  • Ca
  • 2
  • Mg
  • 2
  • ATPase