Sign in to edit your profile (add interests, mentoring, photo, etc.)
    Last Name

    Martin G Marinus PHD

    TitleProfessor Emeritus
    InstitutionUniversity of Massachusetts Medical School
    DepartmentBiochemistry and Molecular Pharmacology
    AddressUniversity of Massachusetts Medical School
    364 Plantation Street, LRB
    Worcester MA 01605
      Other Positions
      InstitutionUMMS - Graduate School of Biomedical Sciences
      DepartmentBiochemistry and Molecular Pharmacology

      InstitutionUMMS - Graduate School of Biomedical Sciences
      DepartmentInterdisciplinary Graduate Program

      InstitutionUMMS - Programs, Centers and Institutes
      DepartmentBacterial Genetics and Pathogenesis


        Academic Background

        B.Sc.(Hons.), 1965, PhD, Otago, New Zealand, 1968
        American Cancer Society Faculty Research Award, 1976-1981
        Visiting Professor, University of Sussex, UK 1980-1981
        Erskine Fellow, University of Canterbury, NZ 1991
        Visiting Professor, University of Goettingen, Germany 1996-1997
        Visiting Professor, Centre de Génétique Moléculaire, CNRS, Gif-sur-Yvette 2006

        Photo: Martin G. Marinus Biology of Enterohemorrhagic Escherichia coli O157:H7 and Enterovirus 933W.
          Enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7 is among the leading causes of food- and water-borne illnesses affecting humans in the U.S., Europe, and Japan. Although most EHEC infections resolve spontaneously after 5-10 days of abdominal cramping and bloody diarrhea, approximately 2-7% of cases progress to the potentially fatal hemolytic uremic syndrome due, in part, to the production of cytotoxic Shiga toxins which are capable of promoting kidney failure.
         We found that resistance to certain antibiotics in E. coli O157:H7 occurs at a higher frequency than in E. coli K-12. Whole genome sequencing is being used to find the mutations responsible.
         In EHEC strain EDL933, the genes (stx2AB) encoding Shiga toxin are located on prophage 933W in the late region between genes Q and S and are transcribed with the late region genes from promoter PR’. Previous work showed that the ends of the genome in a free phage population could not be sequenced suggesting that they are terminally redundant. If so, then 933W should be able to carry out transduction of host genes from one bacterium to another. We showed that, indeed, this is the case thereby providing another way to transfer genetic material among EHEC strains.



        Formation of F-actin in HeLa cells by Escherichia coli 0157:H7. A HeLa cell infected with dam mutant bacteria of E. coli 0157:H7 is shown stained with DAPI (bacteria), filamentous actin stain (pedestals) and a merged image..




        Oligonucleotide array transcription data

        Working with dam and dcm strains

        Bacterial Strains and Plasmids - no longer available

        Owing to circumstances beyond my control, bacterial strains and plasmids are no longer available. Please contact the E. coli Genetic Stock Center which may be able to help you with bacterial strains. Addgene may be able to provide plasmids.


        Microarray Analysis

        Microarray results show that global gene expression in a seqA mutant strain (left panel) is the same as that in a wildtype strain overproducing the Dam methyltransferase (center panel) but that neither is similar to that for the dam mutant (right panel).


        selected publications
        List All   |   Timeline
        1. Marinus MG, Løbner-Olesen A. DNA Methylation. Ecosal Plus. 2014 Jun 6; 2014.
          View in: PubMed
        2. Carone BR, Xu T, Murphy KC, Marinus MG. High incidence of multiple antibiotic resistant cells in cultures of in enterohemorrhagic Escherichia coli O157:H7. Mutat Res Fundam Mol Mech Mutagen. 2014 Jan; 759:1-8.
          View in: PubMed
        3. Groothuizen FS, Fish A, Petoukhov MV, Reumer A, Manelyte L, Winterwerp HH, Marinus MG, Lebbink JH, Svergun DI, Friedhoff P, Sixma TK. Using stable MutS dimers and tetramers to quantitatively analyze DNA mismatch recognition and sliding clamp formation. Nucleic Acids Res. 2013 Sep; 41(17):8166-81.
          View in: PubMed
        4. Jakobsen H, Bojer MS, Marinus MG, Xu T, Struve C, Krogfelt KA, Løbner-Olesen A. The alkaloid compound harmane increases the lifespan of Caenorhabditis elegans during bacterial infection, by modulating the nematode's innate immune response. PLoS One. 2013; 8(3):e60519.
          View in: PubMed
        5. Marinus MG, Poteete AR. High efficiency generalized transduction in Escherichia coli O157:H7. F1000Res. 2013; 2.
          View in: PubMed
        6. Marinus, M.G. DNA Mismatch Repair. EcoSal-Escherichia coli and Salmonella: cellular and molecular biology. A. Böck, R. Curtiss III, J. B. Kaper, P. D. Karp, F. C. Neidhardt, T. Nyström, J. M. Slauch, C. L. Squires, and D. Ussery (ed.). 2012.
        7. Marinus MG. DNA Methylation and Mismatch Repair. The Lure of Bacterial Genetics: a Tribute to John Roth. S. Maloy, K.T. Hughes and J. Casadesus (Eds.). 2011; 211-218.
        8. Marinus MG. DNA methylation and mutator genes in Escherichia coli K-12. Mutat Res. 2010 Oct; 705(2):71-6.
          View in: PubMed
        9. Marinus MG. DNA Methyltransferases: Eubacterial GATC. Encyclopedia of Biological Chemistry. 2010; 660-664.
        10. Marinus MG, Casadesus J. Roles of DNA adenine methylation in host-pathogen interactions: mismatch repair, transcriptional regulation, and more. FEMS Microbiol Rev. 2009 May; 33(3):488-503.
          View in: PubMed
        11. Marinus, M. G., and A. Løbner-Olesen. DNA Methylation. EcoSal-Escherichia coli and Salmonella: cellular and molecular biology. A. Böck, R. Curtiss III, J. B. Kaper, P. D. Karp, F. C. Neidhardt, T. Nyström, J. M. Slauch, C. L. Squires, and D. Ussery (ed.). 2009.
        12. Løbner-Olesen A, Slominska-Wojewodzka M, Hansen FG, Marinus MG. DnaC inactivation in Escherichia coli K-12 induces the SOS response and expression of nucleotide biosynthesis genes. PLoS One. 2008; 3(8):e2984.
          View in: PubMed
        13. Broadbent SE, Balbontin R, Casadesus J, Marinus MG, van der Woude M. YhdJ, a nonessential CcrM-like DNA methyltransferase of Escherichia coli and Salmonella enterica. J Bacteriol. 2007 Jun; 189(11):4325-7.
          View in: PubMed
        14. Riber L, Olsson JA, Jensen RB, Skovgaard O, Dasgupta S, Marinus MG, Løbner-Olesen A. Hda-mediated inactivation of the DnaA protein and dnaA gene autoregulation act in concert to ensure homeostatic maintenance of the Escherichia coli chromosome. Genes Dev. 2006 Aug 1; 20(15):2121-34.
          View in: PubMed
        15. López de Saro FJ, Marinus MG, Modrich P, O'Donnell M. The beta sliding clamp binds to multiple sites within MutL and MutS. J Biol Chem. 2006 May 19; 281(20):14340-9.
          View in: PubMed
        16. Robbins-Manke JL, Zdraveski ZZ, Marinus M, Essigmann JM. Analysis of global gene expression and double-strand-break formation in DNA adenine methyltransferase- and mismatch repair-deficient Escherichia coli. J Bacteriol. 2005 Oct; 187(20):7027-37.
          View in: PubMed
        17. Løbner-Olesen A, Skovgaard O, Marinus MG. Dam methylation: coordinating cellular processes. Curr Opin Microbiol. 2005 Apr; 8(2):154-60.
          View in: PubMed
        18. Marinus MG. Dr. Jekyll and Mr. Hyde: How the MutSLH Repair System Kills the Cell. The Bacterial Chromosome. Higgins, N.P. (ed.). 2005; 413-429.
        19. Kosa JL, Zdraveski ZZ, Currier S, Marinus MG, Essigmann JM. RecN and RecG are required for Escherichia coli survival of Bleomycin-induced damage. Mutat Res. 2004 Oct 4; 554(1-2):149-57.
          View in: PubMed
        20. Marinus MG. DNA Modification: Eubacterial GATC methyltransferase. Encyclopedia of Biological Chemistry. 2004; 660-664.
        21. Løbner-Olesen A, Marinus MG, Hansen FG. Role of SeqA and Dam in Escherichia coli gene expression: a global/microarray analysis. Proc Natl Acad Sci U S A. 2003 Apr 15; 100(8):4672-7.
          View in: PubMed
        22. Roberts RJ, Belfort M, Bestor T, Bhagwat AS, Bickle TA, Bitinaite J, Blumenthal RM, Degtyarev SKh, Dryden DT, Dybvig K, Firman K, Gromova ES, Gumport RI, Halford SE, Hattman S, Heitman J, Hornby DP, Janulaitis A, Jeltsch A, Josephsen J, Kiss A, Klaenhammer TR, Kobayashi I, Kong H, Krüger DH, Lacks S, Marinus MG, Miyahara M, Morgan RD, Murray NE, Nagaraja V, Piekarowicz A, Pingoud A, Raleigh E, Rao DN, Reich N, Repin VE, Selker EU, Shaw PC, Stein DC, Stoddard BL, Szybalski W, Trautner TA, Van Etten JL, Vitor JM, Wilson GG, Xu SY. A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Res. 2003 Apr 1; 31(7):1805-12.
          View in: PubMed
        23. Spek EJ, Vuong LN, Matsuguchi T, Marinus MG, Engelward BP. Nitric oxide-induced homologous recombination in Escherichia coli is promoted by DNA glycosylases. J Bacteriol. 2002 Jul; 184(13):3501-7.
          View in: PubMed
        24. Zdraveski ZZ, Mello JA, Farinelli CK, Essigmann JM, Marinus MG. MutS preferentially recognizes cisplatin- over oxaliplatin-modified DNA. J Biol Chem. 2002 Jan 11; 277(2):1255-60.
          View in: PubMed
        25. Marinus MG. Recombination is essential for viability of an Escherichia coli dam (DNA adenine methyltransferase) mutant. J Bacteriol. 2000 Jan; 182(2):463-8.
          View in: PubMed
        26. Marinus MG. Methylation of nucleic acids and proteins. Encyclopedia of Microbiology. Lederberg, J. et al (eds.). 2000; 240-244.
        27. Rasmussen LJ, Samson L. and Marinus MG. Dam-directed DNA mismatch repair. DNA Damage and Repair: Molecular and Cell Biology. Hoekstra, M.F. and Nickoloff, J.A. (eds.). 1998; 205-228.
        28. Marinus MG. Methylation of DNA. Escherichia coli and Salmonella: Cellular and Molecular Biology. Neidhardt, F.C., Curtiss, R, Ingraham, J.L., Lin, E.C.C., Low, K.B., Magasanik, B., Reznikoff, W.S.., Riley, M., Schaechter, M. and Umbarger, H.E. (eds.). 1996; 782-791.
        29. Bestor TH, Bhagwat AS, Blumenthal RM, Brooks JE, Marinus MG, Raleigh EA, and Szybalski W. Proceedings of the Third New England Biolabs Workshop on Biological DNA Modification. Gene. 1995; 157:1-341.
        30. Rasmussen LJ and Marinus MG. Use of DNA methylation deficient strains in molecular genetics. Methods in Molecular Genetics. Adolph, S.D. (ed.). 1995; 6B:267-279.
        31. Marinus MG. Methylation of DNA. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. Neidhardt, F.C., Curtiss, R., Ingraham, J.L., Lin, E.C.C., Low, K.B., Magasanik, B., Reznikoff, W., Riley, M., Schaechter, M., and Umbarger, H.E. (eds.). 1987; 697-702.
        32. Marinus MG. DNA methylation in prokaryotes. DNA Methylation and its Biological Significance. Razin, H. et al (eds.). 1984; 81-109.
        33. Marinus MG. DNA methylation in Escherichia coli. The Biochemistry of S-Adenosyl-Methionine. Usdin, E. et al (eds.). 1982; 249-253.
        34. Marinus MG. The function of methylated bases in DNA of Escherichia coli. Chromosome damage and DNA repair. E.Seeberg and K. Kleppe (ed.). 1981; 469-473.
        For assistance with using Profiles, please refer to the online tutorials or contact UMMS Help Desk or call 508-856-8643.
        Martin's Networks
        Click the "See All" links for more information and interactive visualizations!
        Similar People
        Same Department
        Physical Neighbors

        This is an official Page/Publication of the University of Massachusetts Worcester Campus
        Office of the Vice Provost for Research, 55 Lake Ave North, Worcester, Massachusetts 01655
        Questions or Comments? Email: Phone: 508-856-1572