Sign in to edit your profile (add interests, mentoring, photo, etc.)
    Keywords
    Last Name
    Institution

    Craig L Peterson PhD

    TitleProfessor
    InstitutionUniversity of Massachusetts Medical School
    DepartmentProgram in Molecular Medicine
    AddressUniversity of Massachusetts Medical School
    373 Plantation Street
    Worcester MA 01605
    Phone508-856-5858
      Other Positions
      InstitutionUMMS - School of Medicine
      DepartmentBiochemistry and Molecular Pharmacology

      InstitutionUMMS - Graduate School of Biomedical Sciences
      DepartmentBiochemistry and Molecular Pharmacology

      InstitutionUMMS - Graduate School of Biomedical Sciences
      DepartmentInterdisciplinary Graduate Program

      InstitutionUMMS - Graduate School of Biomedical Sciences
      DepartmentMD/PhD Program

      InstitutionUMMS - Graduate School of Biomedical Sciences
      DepartmentTranslational Science

        Overview 
        Narrative

        Academic Background

        Peterson Lab Web Page

        Craig Peterson received his BS from the University of Washington in 1983 and his PhD from the University of California, Los Angeles in 1988. He was a Helen Hay Whitney Foundation postdoctoral fellow from 1988-1991, in the Department of Biochemistry and Biophysics at the University of California, San Francisco. In 1992, he joined the University of Massachusetts Medical School as a faculty member in the Program in Molecular Medicine.

        How chromosome structure influences nuclear processes

        craig peterson's picture The overall objective of our research is to determine how chromosome structure influences nuclear processes and to identify and characterize the cellular machines that contend with this structure.Over the years, our general strategy has been to employ yeast molecular genetics to develop detailed models that describe complex nuclear events that can then be directly tested and expanded by subsequent biophysical and biochemical approaches. Much of our efforts over the past few years have focused on ATP-dependent chromatin remodeling enzymes (e.g. SWI/SNF and INO80) that hydrolyze ~1,000 ATPs per minute to alter chromatin structure and thereby regulate transcription, DNA repair, or replication. Our studies are centered on both the regulation and mechanism of this chromatin "remodeling" reaction. Since most of these enzymes are enormous (>1 MDa), multi-subunit enzymes, we are also interested in understanding how these enzymes are assembled and what roles are played by individual subunits. To address these goals we use a broad spectrum of methodologies, including yeast molecular and classical genetics, modern analytical ultracentrifugation, molecular biology, and traditional biochemistry. Notably, these remodeling enzymes are conserved from yeast to mammals, play key roles in gene expression and the maintenance of genome integrity, and loss of their function leads to various disease states.

        In addition to our studies on chromatin remodeling enzymes, we also wish to understand the dynamics of chromatin fibers and how fiber condensation influences DNA repair, transcription, and DNA replication. These projects involve the biochemical reconstitution of defined nucleosomal arrays from recombinant histones and DNA templates that contain head-to-tail repeats of nucleosome positioning sequences. Typically, we perform sedimentation velocity experiments in the analytical ultracentrifuge to investigate how histone modifications (e.g. H4 K16 acetylation), histone variants, or heterochromatin proteins (e.g. HP1, Sir3) influence the folding dynamics of these reconstituted chromatin fibers. These biophysical studies are complemented by powerful biochemical assays where we assess how the structure of a chromatin fiber regulates various steps of DNA double strand break repair or DNA replication.

        As we learn more about the dynamics of chromatin fibers and the basic mechanics of DNA repair and DNA replication, we have initiated in vivo studies that probe how these processes are coordinated and regulated within cells. For instance, we have recently, found that a DNA double strand break can induce the re-localization of a chromosomal domain to the nuclear envelope and that this compartmentalization inhibits recombinational repair. Interestingly, localization to the nuclear periphery requires components of the telomerase complex and seems to be due to an attempt to heal the chromosome by formation of a new telomere. Similar types of chromosome healing events may also occur at stalled replication forks. We are currently using a variety of cell biological and molecular genetic approaches to dissect the complex decision-making processes that a cell employs in its attempts to maintain genome integrity.

        Figure

        Research Figure

        Figure Legend

        3 dimensional EM reconstruction of the 1.15 MDa yeast SWI/SNF chromatin remodeling complex (image courtesy of C. Woodcock and R. Horowitz). Top two panels show two views of yeast SWI/SNF -- dimensions are 27 nm by 8 nm. Bottom two panels show a theoretical docking of a mononucleosome core particle into the presumptive active site. Note the large cavity that provides a perfect fit for the nucleosome core when it is oriented with the entry/exit strands of DNA facing away from the SWI/SNF surface.

        Peterson Lab Web Page


        Rotation Projects

        Rotation Projects

        1. Goal: To determine if de novo telomere formation blocks recombinational repair of a DNA double strand break. This project involves yeast molecular genetic studies using a yeast strain where an inducible DSB is located adjacent to telomeric TG repeat sequences.

        2. Goal: To determine if chromatin remodeling disrupts the folding of chromatin fibers. This project involves assembly of in vitro chromatin fibers and analysis of chromatin folding by analytical ultracentrifugation.



        Bibliographic 
        selected publications
        List All   |   Timeline
        1. Peterson CL, Almouzni G. Nucleosome dynamics as modular systems that integrate DNA damage and repair. Cold Spring Harb Perspect Biol. 2013 Sep; 5(9).
          View in: PubMed
        2. Carey MF, Peterson CL, Smale ST. PCR-mediated site-directed mutagenesis. Cold Spring Harb Protoc. 2013 Aug; 2013(8):738-42.
          View in: PubMed
        3. Watanabe S, Peterson CL. Chromatin dynamics: flipping the switch on a chromatin remodeling machine. Cell Cycle. 2013 Aug 1; 12(15):2337-8.
          View in: PubMed
        4. Carey MF, Peterson CL, Smale ST. Electrophoretic mobility-shift assays. Cold Spring Harb Protoc. 2013 Jul; 2013(7):636-9.
          View in: PubMed
        5. Adkins NL, Niu H, Sung P, Peterson CL. Nucleosome dynamics regulates DNA processing. Nat Struct Mol Biol. 2013 Jul; 20(7):836-42.
          View in: PubMed
        6. Carey MF, Peterson CL, Smale ST. DNase I footprinting. Cold Spring Harb Protoc. 2013 May; 2013(5):469-78.
          View in: PubMed
        7. Carey MF, Peterson CL, Smale ST. Preparation of (32)P-end-labeled DNA fragments for performing DNA-binding experiments. Cold Spring Harb Protoc. 2013 May; 2013(5):464-8.
          View in: PubMed
        8. Watanabe S, Radman-Livaja M, Rando OJ, Peterson CL. A histone acetylation switch regulates H2A.Z deposition by the SWR-C remodeling enzyme. Science. 2013 Apr 12; 340(6129):195-9.
          View in: PubMed
        9. Carey MF, Peterson CL, Smale ST. The RNase protection assay. Cold Spring Harb Protoc. 2013 Mar; 2013(3).
          View in: PubMed
        10. Carey MF, Peterson CL, Smale ST. The primer extension assay. Cold Spring Harb Protoc. 2013 Feb; 2013(2):164-73.
          View in: PubMed
        11. Papamichos-Chronakis M, Peterson CL. Chromatin and the genome integrity network. Nat Rev Genet. 2013 Jan; 14(1):62-75.
          View in: PubMed
        12. Bennett G, Papamichos-Chronakis M, Peterson CL. DNA repair choice defines a common pathway for recruitment of chromatin regulators. Nat Commun. 2013; 4:2084.
          View in: PubMed
        13. Manning BJ, Peterson CL. Releasing the brakes on a chromatin-remodeling enzyme. Nat Struct Mol Biol. 2013 Jan; 20(1):5-7.
          View in: PubMed
        14. Carey MF, Peterson CL, Smale ST. Confirming the functional importance of a protein-DNA interaction. Cold Spring Harb Protoc. 2012 Jul; 2012(7):733-57.
          View in: PubMed
        15. Sanz AB, García R, Rodríguez-Peña JM, Díez-Muñiz S, Nombela C, Peterson CL, Arroyo J. Chromatin remodeling by the SWI/SNF complex is essential for transcription mediated by the yeast cell wall integrity MAPK pathway. Mol Biol Cell. 2012 Jul; 23(14):2805-17.
          View in: PubMed
        16. Carey MF, Peterson CL, Smale ST. Identifying cis-acting DNA elements within a control region. Cold Spring Harb Protoc. 2012 Mar; 2012(3):279-96.
          View in: PubMed
        17. Carey MF, Peterson CL, Smale ST. Experimental strategies for cloning or identifying genes encoding DNA-binding proteins. Cold Spring Harb Protoc. 2012 Feb; 2012(2):183-92.
          View in: PubMed
        18. Carey MF, Peterson CL, Smale ST. Experimental strategies for the identification of DNA-binding proteins. Cold Spring Harb Protoc. 2012 Jan; 2012(1):18-33.
          View in: PubMed
        19. Liu N, Peterson CL, Hayes JJ. SWI/SNF- and RSC-catalyzed nucleosome mobilization requires internal DNA loop translocation within nucleosomes. Mol Cell Biol. 2011 Oct; 31(20):4165-75.
          View in: PubMed
        20. Watanabe S, Peterson CL. The INO80 family of chromatin-remodeling enzymes: regulators of histone variant dynamics. Cold Spring Harb Symp Quant Biol. 2010; 75:35-42.
          View in: PubMed
        21. Peterson CL. The ins and outs of heterochromatic DNA repair. Dev Cell. 2011 Mar 15; 20(3):285-7.
          View in: PubMed
        22. Wippo CJ, Israel L, Watanabe S, Hochheimer A, Peterson CL, Korber P. The RSC chromatin remodelling enzyme has a unique role in directing the accurate positioning of nucleosomes. EMBO J. 2011 Apr 6; 30(7):1277-88.
          View in: PubMed
        23. Peterson CL. Chromatin: a ubiquitin crowbar opens chromatin. Nat Chem Biol. 2011 Feb; 7(2):68-9.
          View in: PubMed
        24. Papamichos-Chronakis M, Watanabe S, Rando OJ, Peterson CL. Global regulation of H2A.Z localization by the INO80 chromatin-remodeling enzyme is essential for genome integrity. Cell. 2011 Jan 21; 144(2):200-13.
          View in: PubMed
        25. Carey MF, Peterson CL, Smale ST. Magnesium-agarose electrophoretic mobility shift assay (EMSA) of transcription factor IID binding to DNA. Cold Spring Harb Protoc. 2010 Nov; 2010(11):pdb.prot5514.
          View in: PubMed
        26. Carey MF, Peterson CL, Smale ST. Protein complex binding to promoter DNA: immobilized template assay. Cold Spring Harb Protoc. 2010 Aug; 2010(8):pdb.prot5465.
          View in: PubMed
        27. Carey MF, Peterson CL, Smale ST. Potassium permanganate probing of Pol II open complexes. Cold Spring Harb Protoc. 2010 Aug; 2010(8):pdb.prot5479.
          View in: PubMed
        28. Carey MF, Peterson CL, Smale ST. Purification of epitope-tagged transcription factor IID. Cold Spring Harb Protoc. 2010 Jul; 2010(7):pdb.prot5450.
          View in: PubMed
        29. Carey MF, Peterson CL, Smale ST. Purification of mediator from HeLa cell lines expressing a flag-tagged mediator subunit. Cold Spring Harb Protoc. 2010 Jul; 2010(7):pdb.prot5451.
          View in: PubMed
        30. Peterson CL. Transcriptional memory: mothers SET the table for daughters. Curr Biol. 2010 Mar 9; 20(5):R240-2.
          View in: PubMed
        31. Kundu S, Peterson CL. Dominant role for signal transduction in the transcriptional memory of yeast GAL genes. Mol Cell Biol. 2010 May; 30(10):2330-40.
          View in: PubMed
        32. Carey MF, Peterson CL, Smale ST. G-less cassette in vitro transcription using HeLa cell nuclear extracts. Cold Spring Harb Protoc. 2010 Mar; 2010(3):pdb.prot5387.
          View in: PubMed
        33. Watanabe S, Resch M, Lilyestrom W, Clark N, Hansen JC, Peterson C, Luger K. Structural characterization of H3K56Q nucleosomes and nucleosomal arrays. Biochim Biophys Acta. 2010 May-Jun; 1799(5-6):480-6.
          View in: PubMed
        34. Oza P, Peterson CL. Opening the DNA repair toolbox: localization of DNA double strand breaks to the nuclear periphery. Cell Cycle. 2010 Jan 1; 9(1):43-9.
          View in: PubMed
        35. Carey MF, Peterson CL, Smale ST. Dignam and Roeder nuclear extract preparation. Cold Spring Harb Protoc. 2009 Dec; 2009(12):pdb.prot5330.
          View in: PubMed
        36. Sinha M, Peterson CL. Chromatin dynamics during repair of chromosomal DNA double-strand breaks. Epigenomics. 2009 Dec; 1(2):371-85.
          View in: PubMed
        37. Carey MF, Peterson CL, Smale ST. In vitro transcription using HeLa cell extracts and primer extension. Cold Spring Harb Protoc. 2009 Dec; 2009(12):pdb.prot5331.
          View in: PubMed
        38. Sinha M, Watanabe S, Johnson A, Moazed D, Peterson CL. Recombinational repair within heterochromatin requires ATP-dependent chromatin remodeling. Cell. 2009 Sep 18; 138(6):1109-21.
          View in: PubMed
        39. Carey MF, Peterson CL, Smale ST. In vivo dimethyl sulfate (DMS) footprinting via ligation-mediated polymerase chain reaction (LM-PCR). Cold Spring Harb Protoc. 2009 Sep; 2009(9):pdb.prot5278.
          View in: PubMed
        40. Carey MF, Peterson CL, Smale ST. In vivo DNase I, MNase, and restriction enzyme footprinting via ligation-mediated polymerase chain reaction (LM-PCR). Cold Spring Harb Protoc. 2009 Sep; 2009(9):pdb.prot5277.
          View in: PubMed
        41. Carey MF, Peterson CL, Smale ST. Chromatin immunoprecipitation (ChIP). Cold Spring Harb Protoc. 2009 Sep; 2009(9):pdb.prot5279.
          View in: PubMed
        42. Oza P, Jaspersen SL, Miele A, Dekker J, Peterson CL. Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery. Genes Dev. 2009 Apr 15; 23(8):912-27.
          View in: PubMed
        43. Peterson CL. Reconstitution of nucleosomal arrays using recombinant Drosophila ACF and NAP1. Cold Spring Harb Protoc. 2009 Apr; 2009(4):pdb.prot5114.
          View in: PubMed
        44. Peterson CL. Purification of recombinant Drosophila ACF. Cold Spring Harb Protoc. 2009 Apr; 2009(4):pdb.prot5115.
          View in: PubMed
        45. Peterson CL. Purification of recombinant Drosophila NAP1. Cold Spring Harb Protoc. 2009 Apr; 2009(4):pdb.prot5116.
          View in: PubMed
        46. Kundu S, Peterson CL. Role of chromatin states in transcriptional memory. Biochim Biophys Acta. 2009 Jun; 1790(6):445-55.
          View in: PubMed
        47. Peterson CL. Salt gradient dialysis reconstitution of nucleosomes. CSH Protoc. 2008; 2008:pdb.prot5113.
          View in: PubMed
        48. Peterson CL, Hansen JC. Chicken erythrocyte histone octamer preparation. CSH Protoc. 2008; 2008:pdb.prot5112.
          View in: PubMed
        49. Fu Y, Sinha M, Peterson CL, Weng Z. The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome. PLoS Genet. 2008; 4(7):e1000138.
          View in: PubMed
        50. Dechassa ML, Zhang B, Horowitz-Scherer R, Persinger J, Woodcock CL, Peterson CL, Bartholomew B. Architecture of the SWI/SNF-nucleosome complex. Mol Cell Biol. 2008 Oct; 28(19):6010-21.
          View in: PubMed
        51. Sinha M, Peterson CL. A Rad51 presynaptic filament is sufficient to capture nucleosomal homology during recombinational repair of a DNA double-strand break. Mol Cell. 2008 Jun 20; 30(6):803-10.
          View in: PubMed
        52. Papamichos-Chronakis M, Peterson CL. The Ino80 chromatin-remodeling enzyme regulates replisome function and stability. Nat Struct Mol Biol. 2008 Apr; 15(4):338-45.
          View in: PubMed
        53. Triezenberg SJ, Peterson CL. Profound challenges do remain in our understanding of the mechanisms of gene regulation. Biochim Biophys Acta. 2008 Jan; 1779(1):1-2.
          View in: PubMed
        54. Carruthers LM, Marton LJ, Peterson CL. Polyamine analogues: potent inducers of nucleosomal array oligomerization and inhibitors of yeast cell growth. Biochem J. 2007 Aug 1; 405(3):541-5.
          View in: PubMed
        55. Yang X, Zaurin R, Beato M, Peterson CL. Swi3p controls SWI/SNF assembly and ATP-dependent H2A-H2B displacement. Nat Struct Mol Biol. 2007 Jun; 14(6):540-7.
          View in: PubMed
        56. Peterson CL. Genome integrity: a HAT needs a chaperone. Curr Biol. 2007 May 1; 17(9):R324-6.
          View in: PubMed
        57. Kundu S, Horn PJ, Peterson CL. SWI/SNF is required for transcriptional memory at the yeast GAL gene cluster. Genes Dev. 2007 Apr 15; 21(8):997-1004.
          View in: PubMed
        58. Zhang Y, Smith CL, Saha A, Grill SW, Mihardja S, Smith SB, Cairns BR, Peterson CL, Bustamante C. DNA translocation and loop formation mechanism of chromatin remodeling by SWI/SNF and RSC. Mol Cell. 2006 Nov 17; 24(4):559-68.
          View in: PubMed
        59. Fry CJ, Norris A, Cosgrove M, Boeke JD, Peterson CL. The LRS and SIN domains: two structurally equivalent but functionally distinct nucleosomal surfaces required for transcriptional silencing. Mol Cell Biol. 2006 Dec; 26(23):9045-59.
          View in: PubMed
        60. Papamichos-Chronakis M, Krebs JE, Peterson CL. Interplay between Ino80 and Swr1 chromatin remodeling enzymes regulates cell cycle checkpoint adaptation in response to DNA damage. Genes Dev. 2006 Sep 1; 20(17):2437-49.
          View in: PubMed
        61. Shogren-Knaak M, Peterson CL. Switching on chromatin: mechanistic role of histone H4-K16 acetylation. Cell Cycle. 2006 Jul; 5(13):1361-5.
          View in: PubMed
        62. Shundrovsky A, Smith CL, Lis JT, Peterson CL, Wang MD. Probing SWI/SNF remodeling of the nucleosome by unzipping single DNA molecules. Nat Struct Mol Biol. 2006 Jun; 13(6):549-54.
          View in: PubMed
        63. Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science. 2006 Feb 10; 311(5762):844-7.
          View in: PubMed
        64. Horn PJ, Peterson CL. Heterochromatin assembly: a new twist on an old model. Chromosome Res. 2006; 14(1):83-94.
          View in: PubMed
        65. Chowdhury D, Keogh MC, Ishii H, Peterson CL, Buratowski S, Lieberman J. gamma-H2AX dephosphorylation by protein phosphatase 2A facilitates DNA double-strand break repair. Mol Cell. 2005 Dec 9; 20(5):801-9.
          View in: PubMed
        66. Hill DA, Peterson CL, Imbalzano AN. Effects of HMGN1 on chromatin structure and SWI/SNF-mediated chromatin remodeling. J Biol Chem. 2005 Dec 16; 280(50):41777-83.
          View in: PubMed
        67. Horn PJ, Bastie JN, Peterson CL. A Rik1-associated, cullin-dependent E3 ubiquitin ligase is essential for heterochromatin formation. Genes Dev. 2005 Jul 15; 19(14):1705-14.
          View in: PubMed
        68. Smith CL, Peterson CL. A conserved Swi2/Snf2 ATPase motif couples ATP hydrolysis to chromatin remodeling. Mol Cell Biol. 2005 Jul; 25(14):5880-92.
          View in: PubMed
        69. Cheung WL, Turner FB, Krishnamoorthy T, Wolner B, Ahn SH, Foley M, Dorsey JA, Peterson CL, Berger SL, Allis CD. Phosphorylation of histone H4 serine 1 during DNA damage requires casein kinase II in S. cerevisiae. Curr Biol. 2005 Apr 12; 15(7):656-60.
          View in: PubMed
        70. Wolner B, Peterson CL. ATP-dependent and ATP-independent roles for the Rad54 chromatin remodeling enzyme during recombinational repair of a DNA double strand break. J Biol Chem. 2005 Mar 18; 280(11):10855-60.
          View in: PubMed
        71. Smith CL, Peterson CL. ATP-dependent chromatin remodeling. Curr Top Dev Biol. 2005; 65:115-48.
          View in: PubMed
        72. Vicent GP, Nacht AS, Smith CL, Peterson CL, Dimitrov S, Beato M. DNA instructed displacement of histones H2A and H2B at an inducible promoter. Mol Cell. 2004 Nov 5; 16(3):439-52.
          View in: PubMed
        73. Peterson CL, Laniel MA. Histones and histone modifications. Curr Biol. 2004 Jul 27; 14(14):R546-51.
          View in: PubMed
        74. Peterson CL, Côté J. Cellular machineries for chromosomal DNA repair. Genes Dev. 2004 Mar 15; 18(6):602-16.
          View in: PubMed
        75. Boyer LA, Latek RR, Peterson CL. The SANT domain: a unique histone-tail-binding module? Nat Rev Mol Cell Biol. 2004 Feb; 5(2):158-63.
          View in: PubMed
        76. Fry CJ, Shogren-Knaak MA, Peterson CL. Histone H3 amino-terminal tail phosphorylation and acetylation: synergistic or independent transcriptional regulatory marks? Cold Spring Harb Symp Quant Biol. 2004; 69:219-26.
          View in: PubMed
        77. Shogren-Knaak MA, Peterson CL. Creating designer histones by native chemical ligation. Methods Enzymol. 2004; 375:62-76.
          View in: PubMed
        78. Smith CL, Peterson CL. Coupling tandem affinity purification and quantitative tyrosine iodination to determine subunit stoichiometry of protein complexes. Methods. 2003 Sep; 31(1):104-9.
          View in: PubMed
        79. Wolner B, van Komen S, Sung P, Peterson CL. Recruitment of the recombinational repair machinery to a DNA double-strand break in yeast. Mol Cell. 2003 Jul; 12(1):221-32.
          View in: PubMed
        80. Jaskelioff M, Peterson CL. Chromatin and transcription: histones continue to make their marks. Nat Cell Biol. 2003 May; 5(5):395-9.
          View in: PubMed
        81. Gaillard H, Fitzgerald DJ, Smith CL, Peterson CL, Richmond TJ, Thoma F. Chromatin remodeling activities act on UV-damaged nucleosomes and modulate DNA damage accessibility to photolyase. J Biol Chem. 2003 May 16; 278(20):17655-63.
          View in: PubMed
        82. Peterson CL. Transcriptional activation: getting a grip on condensed chromatin. Curr Biol. 2003 Mar 4; 13(5):R195-7.
          View in: PubMed
        83. Shogren-Knaak MA, Fry CJ, Peterson CL. A native peptide ligation strategy for deciphering nucleosomal histone modifications. J Biol Chem. 2003 May 2; 278(18):15744-8.
          View in: PubMed
        84. Smith CL, Horowitz-Scherer R, Flanagan JF, Woodcock CL, Peterson CL. Structural analysis of the yeast SWI/SNF chromatin remodeling complex. Nat Struct Biol. 2003 Feb; 10(2):141-5.
          View in: PubMed
        85. Jaskelioff M, Van Komen S, Krebs JE, Sung P, Peterson CL. Rad54p is a chromatin remodeling enzyme required for heteroduplex DNA joint formation with chromatin. J Biol Chem. 2003 Mar 14; 278(11):9212-8.
          View in: PubMed
        86. Boyer LA, Langer MR, Crowley KA, Tan S, Denu JM, Peterson CL. Essential role for the SANT domain in the functioning of multiple chromatin remodeling enzymes. Mol Cell. 2002 Oct; 10(4):935-42.
          View in: PubMed
        87. Horn PJ, Peterson CL. Molecular biology. Chromatin higher order folding--wrapping up transcription. Science. 2002 Sep 13; 297(5588):1824-7.
          View in: PubMed
        88. Langer MR, Fry CJ, Peterson CL, Denu JM. Modulating acetyl-CoA binding in the GCN5 family of histone acetyltransferases. J Biol Chem. 2002 Jul 26; 277(30):27337-44.
          View in: PubMed
        89. Peterson CL. HDAC's at work: everyone doing their part. Mol Cell. 2002 May; 9(5):921-2.
          View in: PubMed
        90. Peterson CL. Chromatin remodeling: nucleosomes bulging at the seams. Curr Biol. 2002 Apr 2; 12(7):R245-7.
          View in: PubMed
        91. Peterson CL. Chromatin remodeling enzymes: taming the machines. Third in review series on chromatin dynamics. EMBO Rep. 2002 Apr; 3(4):319-22.
          View in: PubMed
        92. Horn PJ, Carruthers LM, Logie C, Hill DA, Solomon MJ, Wade PA, Imbalzano AN, Hansen JC, Peterson CL. Phosphorylation of linker histones regulates ATP-dependent chromatin remodeling enzymes. Nat Struct Biol. 2002 Apr; 9(4):263-7.
          View in: PubMed
        93. Fry CJ, Peterson CL. Transcription. Unlocking the gates to gene expression. Science. 2002 Mar 8; 295(5561):1847-8.
          View in: PubMed
        94. Horn PJ, Crowley KA, Carruthers LM, Hansen JC, Peterson CL. The SIN domain of the histone octamer is essential for intramolecular folding of nucleosomal arrays. Nat Struct Biol. 2002 Mar; 9(3):167-71.
          View in: PubMed
        95. Brower-Toland BD, Smith CL, Yeh RC, Lis JT, Peterson CL, Wang MD. Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA. Proc Natl Acad Sci U S A. 2002 Feb 19; 99(4):1960-5.
          View in: PubMed
        96. Horn PJ, Peterson CL. The bromodomain: a regulator of ATP-dependent chromatin remodeling? Front Biosci. 2001 Aug 1; 6:D1019-23.
          View in: PubMed
        97. Fry CJ, Peterson CL. Chromatin remodeling enzymes: who's on first? Curr Biol. 2001 Mar 6; 11(5):R185-97.
          View in: PubMed
        98. Peterson CL. Chromatin: mysteries solved? Biochem Cell Biol. 2001; 79(3):219-25.
          View in: PubMed
        99. Gavin I, Horn PJ, Peterson CL. SWI/SNF chromatin remodeling requires changes in DNA topology. Mol Cell. 2001 Jan; 7(1):97-104.
          View in: PubMed
        100. Krebs JE, Fry CJ, Samuels ML, Peterson CL. Global role for chromatin remodeling enzymes in mitotic gene expression. Cell. 2000 Sep 1; 102(5):587-98.
          View in: PubMed
        101. Boyer LA, Peterson CL. Actin-related proteins (Arps): conformational switches for chromatin-remodeling machines? Bioessays. 2000 Jul; 22(7):666-72.
          View in: PubMed
        102. Peterson CL. ATP-dependent chromatin remodeling: going mobile. FEBS Lett. 2000 Jun 30; 476(1-2):68-72.
          View in: PubMed
        103. Boyer LA, Logie C, Bonte E, Becker PB, Wade PA, Wolffe AP, Wu C, Imbalzano AN, Peterson CL. Functional delineation of three groups of the ATP-dependent family of chromatin remodeling enzymes. J Biol Chem. 2000 Jun 23; 275(25):18864-70.
          View in: PubMed
        104. Peterson CL, Logie C. Recruitment of chromatin remodeling machines. J Cell Biochem. 2000 May; 78(2):179-85.
          View in: PubMed
        105. Jaskelioff M, Gavin IM, Peterson CL, Logie C. SWI-SNF-mediated nucleosome remodeling: role of histone octamer mobility in the persistence of the remodeled state. Mol Cell Biol. 2000 May; 20(9):3058-68.
          View in: PubMed
        106. Boyer LA, Shao X, Ebright RH, Peterson CL. Roles of the histone H2A-H2B dimers and the (H3-H4)(2) tetramer in nucleosome remodeling by the SWI-SNF complex. J Biol Chem. 2000 Apr 21; 275(16):11545-52.
          View in: PubMed
        107. Peterson CL, Workman JL. Promoter targeting and chromatin remodeling by the SWI/SNF complex. Curr Opin Genet Dev. 2000 Apr; 10(2):187-92.
          View in: PubMed
        108. Krebs JE, Peterson CL. Understanding "active" chromatin: a historical perspective of chromatin remodeling. Crit Rev Eukaryot Gene Expr. 2000; 10(1):1-12.
          View in: PubMed
        109. Pollard KJ, Samuels ML, Crowley KA, Hansen JC, Peterson CL. Functional interaction between GCN5 and polyamines: a new role for core histone acetylation. EMBO J. 1999 Oct 15; 18(20):5622-33.
          View in: PubMed
        110. Krebs JE, Kuo MH, Allis CD, Peterson CL. Cell cycle-regulated histone acetylation required for expression of the yeast HO gene. Genes Dev. 1999 Jun 1; 13(11):1412-21.
          View in: PubMed
        111. Flanagan JF, Peterson CL. A role for the yeast SWI/SNF complex in DNA replication. Nucleic Acids Res. 1999 May 1; 27(9):2022-8.
          View in: PubMed
        112. Logie C, Tse C, Hansen JC, Peterson CL. The core histone N-terminal domains are required for multiple rounds of catalytic chromatin remodeling by the SWI/SNF and RSC complexes. Biochemistry. 1999 Feb 23; 38(8):2514-22.
          View in: PubMed
        113. Logie C, Peterson CL. Purification and biochemical properties of yeast SWI/SNF complex. Methods Enzymol. 1999; 304:726-41.
          View in: PubMed
        114. Peterson CL, Zhao Y, Chait BT. Subunits of the yeast SWI/SNF complex are members of the actin-related protein (ARP) family. J Biol Chem. 1998 Sep 11; 273(37):23641-4.
          View in: PubMed
        115. Pollard KJ, Peterson CL. Chromatin remodeling: a marriage between two families? Bioessays. 1998 Sep; 20(9):771-80.
          View in: PubMed
        116. Peterson CL. SWI/SNF complex: dissection of a chromatin remodeling cycle. Cold Spring Harb Symp Quant Biol. 1998; 63:545-52.
          View in: PubMed
        117. Logie C, Peterson CL. Catalytic activity of the yeast SWI/SNF complex on reconstituted nucleosome arrays. EMBO J. 1997 Nov 17; 16(22):6772-82.
          View in: PubMed
        118. Pollard KJ, Peterson CL. Role for ADA/GCN5 products in antagonizing chromatin-mediated transcriptional repression. Mol Cell Biol. 1997 Nov; 17(11):6212-22.
          View in: PubMed
        119. Burns LG, Peterson CL. The yeast SWI-SNF complex facilitates binding of a transcriptional activator to nucleosomal sites in vivo. Mol Cell Biol. 1997 Aug; 17(8):4811-9.
          View in: PubMed
        120. Wechser MA, Kladde MP, Alfieri JA, Peterson CL. Effects of Sin- versions of histone H4 on yeast chromatin structure and function. EMBO J. 1997 Apr 15; 16(8):2086-95.
          View in: PubMed
        121. Burns LG, Peterson CL. Protein complexes for remodeling chromatin. Biochim Biophys Acta. 1997 Feb 7; 1350(2):159-68.
          View in: PubMed
        122. Richmond E, Peterson CL. Functional analysis of the DNA-stimulated ATPase domain of yeast SWI2/SNF2. Nucleic Acids Res. 1996 Oct 1; 24(19):3685-92.
          View in: PubMed
        123. Peterson CL. Multiple SWItches to turn on chromatin? Curr Opin Genet Dev. 1996 Apr; 6(2):171-5.
          View in: PubMed
        124. Quinn J, Fyrberg AM, Ganster RW, Schmidt MC, Peterson CL. DNA-binding properties of the yeast SWI/SNF complex. Nature. 1996 Feb 29; 379(6568):844-7.
          View in: PubMed
        125. Peterson CL, Tamkun JW. The SWI-SNF complex: a chromatin remodeling machine? Trends Biochem Sci. 1995 Apr; 20(4):143-6.
          View in: PubMed
        126. Peterson CL. The SMC family: novel motor proteins for chromosome condensation? Cell. 1994 Nov 4; 79(3):389-92.
          View in: PubMed
        127. Peterson CL, Dingwall A, Scott MP. Five SWI/SNF gene products are components of a large multisubunit complex required for transcriptional enhancement. Proc Natl Acad Sci U S A. 1994 Apr 12; 91(8):2905-8.
          View in: PubMed
        For assistance with using Profiles, please refer to the online tutorials or contact UMMS Help Desk or call 508-856-8643.
        Craig's Networks
        Click the "See All" links for more information and interactive visualizations!
        Concepts
        _
        Co-Authors
        _
        Similar People
        _
        Same Department
        Physical Neighbors
        _

        This is an official Page/Publication of the University of Massachusetts Worcester Campus
        Office of the Vice Provost for Research, 55 Lake Ave North, Worcester, Massachusetts 01655
        Questions or Comments? Email: publicaffairs@umassmed.edu Phone: 508-856-1572