Header Logo

Victor R Ambros PhD

TitleProfessor
Endowed TitleSilverman Chair in Natural Sciences
InstitutionUMass Chan Medical School
DepartmentProgram in Molecular Medicine
AddressUMass Chan Medical School
373 Plantation Street Two Biotech Suite 306
Worcester MA 01605
Phone508-856-6380
vCardDownload vCard
    Other Positions
    InstitutionT.H. Chan School of Medicine
    DepartmentProgram in Molecular Medicine

    InstitutionMorningside Graduate School of Biomedical Sciences
    DepartmentInterdisciplinary Graduate Program

    InstitutionMorningside Graduate School of Biomedical Sciences
    DepartmentMD/PhD Program

    InstitutionMorningside Graduate School of Biomedical Sciences
    DepartmentPostbaccalaureate Research Education Program

    InstitutionUMass Chan Programs, Centers and Institutes
    DepartmentBioinformatics and Integrative Biology


    Collapse Biography 
    Collapse education and training
    Massachusetts Institute of Technology, Cambridge, MA, United StatesBSBiology
    Massachusetts Institute of Technology, Cambridge, MA, United StatesPHDBiology

    Collapse Overview 
    Collapse overview




    Biography



    Victor Ambros grew up in Vermont and graduated from MIT in 1975. He did his graduate research (1976-1979) with David Baltimore at MIT, studying poliovirus genome structure and replication. He began to study the genetic pathways controlling developmental timing in the nematode C. elegans as a postdoc in H. Robert Horvitz's lab at MIT, and continued those studies while on the faculty of Harvard (1984-1992), Dartmouth (1992-2007), and the University of Massachusetts Medical School (2008-present). In 1993, members of the Ambros lab identified the first microRNA, the product of lin-4, a heterochronic gene of C. elegans. Since then, the role of microRNAs in development has been a major focus of his research.



    Silverman Professor of Natural Sciences, Professor, Program in Molecular Medicine



    Ambros Lab Web Page



     



     



    Molecular and genetic control of animal development; microRNA regulatory mechanisms



    We are interested in the genetic regulatory mechanisms that control animal development, and in particular the molecules that function during animal development to ensure the proper timing of developmental events. We have primarily employed the nematode Caenorhabditis elegans as a model system for studying the function of regulators of developmental timing, which in C. elegans are known as the “heterochronic genes”, in reference to the remarkable changes in relative timing of developmental event that are elicited by mutations in these genes. The heterochronic genes comprise a set of interrelated regulatory pathways that include proteins that regulate the transcription of other genes, and also a class of small RNA, known as microRNAs, that regulate the production of protein by the messenger RNAs of specific target genes. Much of our research in recent years has been aimed at understanding how microRNAs are integrated into broader regulatory networks related to animal development and human disease, and at uncovering the molecular mechanisms for how microRNAs exert their effects on gene expression.



    Victor's Worms


    Collapse Rotation Projects

    Rotations

    Project 1: Genetic screens for proteins that modify or regulate the activity of microRNAs in C. elegans.



    Collapse Bibliographic 
    Collapse selected publications
    Publications listed below are automatically derived from MEDLINE/PubMed and other sources, which might result in incorrect or missing publications. Faculty can login to make corrections and additions.
    Newest   |   Oldest   |   Most Cited   |   Most Discussed   |   Timeline   |   Field Summary   |   Plain Text
    PMC Citations indicate the number of times the publication was cited by articles in PubMed Central, and the Altmetric score represents citations in news articles and social media. (Note that publications are often cited in additional ways that are not shown here.) Fields are based on how the National Library of Medicine (NLM) classifies the publication's journal and might not represent the specific topic of the publication. Translation tags are based on the publication type and the MeSH terms NLM assigns to the publication. Some publications (especially newer ones and publications not in PubMed) might not yet be assigned Field or Translation tags.) Click a Field or Translation tag to filter the publications.
    1. Ambros V. MicroRNA-mediated gene regulation and the resilience of multicellular animals. Postepy Biochem. 2024 05 23; 70(1):62-70. PMID: 39016233.
      Citations:    
    2. Duan Y, Li L, Panzade GP, Piton A, Zinovyeva A, Ambros V. Modeling neurodevelopmental disorder-associated human AGO1 mutations in Caenorhabditis elegans Argonaute alg-1. Proc Natl Acad Sci U S A. 2024 Mar 05; 121(10):e2308255121. PMID: 38412125.
      Citations:    
    3. Mirza Z, Walhout AJM, Ambros V. A bacterial pathogen induces developmental slowing by high reactive oxygen species and mitochondrial dysfunction in Caenorhabditis elegans. Cell Rep. 2023 10 31; 42(10):113189. PMID: 37801396.
      Citations:    Fields:    Translation:AnimalsCells
    4. Duan Y, Li L, Panzade GP, Piton A, Zinovyeva A, Ambros V. Modeling neurodevelopmental disorder-associated hAGO1 mutations in C. elegans Argonaute ALG-1. bioRxiv. 2023 Apr 07. PMID: 37066388.
      Citations:    
    5. Duan Y, Veksler-Lublinsky I, Ambros V. Critical contribution of 3' non-seed base pairing to the in?vivo function of the evolutionarily conserved let-7a microRNA. Cell Rep. 2022 04 26; 39(4):110745. PMID: 35476978.
      Citations: 8     Fields:    Translation:Cells
    6. Ilbay O, Nelson C, Ambros V. C.?elegans LIN-28 controls temporal cell fate progression by regulating LIN-46 expression via the 5' UTR of lin-46 mRNA. Cell Rep. 2021 09 07; 36(10):109670. PMID: 34496246.
      Citations: 2     Fields:    Translation:Animals
    7. Nelson C, Ambros V. A cohort of Caenorhabditis species lacking the highly conserved let-7 microRNA. G3 (Bethesda). 2021 04 23; 11(3). PMID: 33890616.
      Citations: 2     Fields:    Translation:Animals
    8. Ambros V. Development: Keeping Time with Transcription. Curr Biol. 2021 02 22; 31(4):R212-R214. PMID: 33621514.
      Citations:    Fields:    Translation:Animals
    9. Vasquez-Rifo A, Ricci EP, Ambros V. Pseudomonas aeruginosa cleaves the decoding center of Caenorhabditis elegans ribosomes. PLoS Biol. 2020 12; 18(12):e3000969. PMID: 33259473.
      Citations: 2     Fields:    Translation:AnimalsCells
    10. Duan Y, Choi S, Nelson C, Ambros V. Engineering essential genes with a "jump board" strategy using CRISPR/Cas9. MicroPubl Biol. 2020 Oct 08; 2020. PMID: 33274316.
      Citations:    
    11. Duan Y, Sun Y, Ambros V. RNA-seq with RNase H-based ribosomal RNA depletion specifically designed for C. elegans. MicroPubl Biol. 2020 Sep 22; 2020. PMID: 33005886.
      Citations:    
    12. Geekiyanage H, Rayatpisheh S, Wohlschlegel JA, Brown R, Ambros V. Extracellular microRNAs in human circulation are associated with miRISC complexes that are accessible to anti-AGO2 antibody and can bind target mimic oligonucleotides. Proc Natl Acad Sci U S A. 2020 09 29; 117(39):24213-24223. PMID: 32929008.
      Citations: 39     Fields:    Translation:HumansCells
    13. Vasquez-Rifo A, Veksler-Lublinsky I, Cheng Z, Ausubel FM, Ambros V. The Pseudomonas aeruginosa accessory genome elements influence virulence towards Caenorhabditis elegans. Genome Biol. 2019 12 10; 20(1):270. PMID: 31823826.
      Citations: 16     Fields:    Translation:AnimalsCells
    14. Carreiro S, Marvel-Coen J, Lee R, Chapman B, Ambros V. Circulating microRNA Profiles in Acetaminophen Toxicity. J Med Toxicol. 2020 04; 16(2):177-187. PMID: 31792846.
      Citations: 2     Fields:    Translation:HumansCells
    15. Ilbay O, Ambros V. Regulation of nuclear-cytoplasmic partitioning by the lin-28-lin-46 pathway reinforces microRNA repression of HBL-1 to confer robust cell-fate progression in C. elegans. Development. 2019 11 06; 146(21). PMID: 31597658.
      Citations: 6     Fields:    Translation:AnimalsCells
    16. Ambros V. Mathematics of microRNAs: stabilizing gene regulatory networks. Natl Sci Rev. 2019 Nov; 6(6):1189-1190. PMID: 34691997.
      Citations:    
    17. Nelson C, Ambros V. Correction: Trans-splicing of the C. elegans let-7 primary transcript developmentally regulates let-7 microRNA biogenesis and let-7 family microRNA activity (doi: 10.1242/dev.172031). Development. 2019 Jul 24; 146(14). PMID: 31340934.
      Citations:    Fields:    
    18. Ilbay O, Ambros V. Pheromones and Nutritional Signals Regulate the Developmental Reliance on let-7 Family MicroRNAs in C.?elegans. Curr Biol. 2019 06 03; 29(11):1735-1745.e4. PMID: 31104929.
      Citations: 14     Fields:    Translation:AnimalsCells
    19. Choi S, Ambros V. The C. elegans heterochronic gene lin-28 coordinates the timing of hypodermal and somatic gonadal programs for hermaphrodite reproductive system morphogenesis. Development. 2019 03 07; 146(5). PMID: 30745431.
      Citations: 3     Fields:    Translation:Animals
    20. Nelson C, Ambros V. Trans-splicing of the C. elegans let-7 primary transcript developmentally regulates let-7 microRNA biogenesis and let-7 family microRNA activity. Development. 2019 03 04; 146(5). PMID: 30770392.
      Citations: 7     Fields:    Translation:AnimalsCells
    21. Ambros V, Ruvkun G. Recent Molecular Genetic Explorations of Caenorhabditis elegans MicroRNAs. Genetics. 2018 07; 209(3):651-673. PMID: 29967059.
      Citations: 29     Fields:    Translation:Animals
    22. McJunkin K, Ambros V. A microRNA family exerts maternal control on sex determination in C. elegans. Genes Dev. 2017 02 15; 31(4):422-437. PMID: 28279983.
      Citations: 29     Fields:    Translation:Animals
    23. Ren Z, Veksler-Lublinsky I, Morrissey D, Ambros V. Staufen Negatively Modulates MicroRNA Activity in Caenorhabditis elegans. G3 (Bethesda). 2016 05 03; 6(5):1227-37. PMID: 26921297.
      Citations: 12     Fields:    Translation:Animals
    24. Tanriverdi K, Kucukural A, Mikhalev E, Tanriverdi SE, Lee R, Ambros VR, Freedman JE. Comparison of RNA isolation and associated methods for extracellular RNA detection by high-throughput quantitative polymerase chain reaction. Anal Biochem. 2016 May 15; 501:66-74. PMID: 26969789.
      Citations: 13     Fields:    Translation:Humans
    25. Zinovyeva AY, Veksler-Lublinsky I, Vashisht AA, Wohlschlegel JA, Ambros VR. Caenorhabditis elegans ALG-1 antimorphic mutations uncover functions for Argonaute in microRNA guide strand selection and passenger strand disposal. Proc Natl Acad Sci U S A. 2015 Sep 22; 112(38):E5271-80. PMID: 26351692.
      Citations: 14     Fields:    Translation:AnimalsCells
    26. Burke SL, Hammell M, Ambros V. Robust Distal Tip Cell Pathfinding in the Face of Temperature Stress Is Ensured by Two Conserved microRNAS in Caenorhabditis elegans. Genetics. 2015 Aug; 200(4):1201-18. PMID: 26078280.
      Citations: 17     Fields:    Translation:AnimalsCells
    27. Bala S, Csak T, Momen-Heravi F, Lippai D, Kodys K, Catalano D, Satishchandran A, Ambros V, Szabo G. Biodistribution and function of extracellular miRNA-155 in mice. Sci Rep. 2015 May 29; 5:10721. PMID: 26024046.
      Citations: 72     Fields:    Translation:AnimalsCells
    28. Ren Z, Ambros VR. Caenorhabditis elegans microRNAs of the let-7 family act in innate immune response circuits and confer robust developmental timing against pathogen stress. Proc Natl Acad Sci U S A. 2015 May 05; 112(18):E2366-75. PMID: 25897023.
      Citations: 44     Fields:    Translation:AnimalsCells
    29. Harandi OF, Ambros VR. Control of stem cell self-renewal and differentiation by the heterochronic genes and the cellular asymmetry machinery in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2015 Jan 20; 112(3):E287-96. PMID: 25561544.
      Citations: 15     Fields:    Translation:AnimalsCells
    30. Nelson C, Ambros V, Baehrecke EH. miR-14 regulates autophagy during developmental cell death by targeting ip3-kinase 2. Mol Cell. 2014 Nov 06; 56(3):376-388. PMID: 25306920.
      Citations: 32     Fields:    Translation:AnimalsCells
    31. Ward J, Kanchagar C, Veksler-Lublinsky I, Lee RC, McGill MR, Jaeschke H, Curry SC, Ambros VR. Circulating microRNA profiles in human patients with acetaminophen hepatotoxicity or ischemic hepatitis. Proc Natl Acad Sci U S A. 2014 Aug 19; 111(33):12169-74. PMID: 25092309.
      Citations: 85     Fields:    Translation:Humans
    32. Sterling CH, Veksler-Lublinsky I, Ambros V. An efficient and sensitive method for preparing cDNA libraries from scarce biological samples. Nucleic Acids Res. 2015 Jan; 43(1):e1. PMID: 25056322.
      Citations: 11     Fields:    Translation:HumansCells
    33. McJunkin K, Ambros V. The embryonic mir-35 family of microRNAs promotes multiple aspects of fecundity in Caenorhabditis elegans. G3 (Bethesda). 2014 Jul 21; 4(9):1747-54. PMID: 25053708.
      Citations: 34     Fields:    Translation:Animals
    34. Zinovyeva AY, Bouasker S, Simard MJ, Hammell CM, Ambros V. Mutations in conserved residues of the C. elegans microRNA Argonaute ALG-1 identify separable functions in ALG-1 miRISC loading and target repression. PLoS Genet. 2014 Apr; 10(4):e1004286. PMID: 24763381.
      Citations: 22     Fields:    Translation:AnimalsCells
    35. Ward JA, Esa N, Pidikiti R, Freedman JE, Keaney JF, Tanriverdi K, Vitseva O, Ambros V, Lee R, McManus DD. Circulating Cell and Plasma microRNA Profiles Differ between Non-ST-Segment and ST-Segment-Elevation Myocardial Infarction. Fam Med Med Sci Res. 2013 Oct 01; 2(2):108. PMID: 24432306.
      Citations:    
    36. Ambros V. Victor Ambros: the broad scope of microRNAs. Interview by Caitlin Sedwick. J Cell Biol. 2013 May 13; 201(4):492-3. PMID: 23671307.
      Citations: 4     Fields:    Translation:HumansAnimals
    37. Zou Y, Chiu H, Zinovyeva A, Ambros V, Chuang CF, Chang C. Developmental decline in neuronal regeneration by the progressive change of two intrinsic timers. Science. 2013 Apr 19; 340(6130):372-376. PMID: 23599497.
      Citations: 83     Fields:    Translation:AnimalsCells
    38. Boss? GD, R?egger S, Ow MC, Vasquez-Rifo A, Rondeau EL, Ambros VR, Grosshans H, Simard MJ. The decapping scavenger enzyme DCS-1 controls microRNA levels in Caenorhabditis elegans. Mol Cell. 2013 Apr 25; 50(2):281-7. PMID: 23541767.
      Citations: 36     Fields:    Translation:AnimalsCells
    39. Karp X, Ambros V. Dauer larva quiescence alters the circuitry of microRNA pathways regulating cell fate progression in C. elegans. Development. 2012 Jun; 139(12):2177-86. PMID: 22619389.
      Citations: 28     Fields:    Translation:AnimalsCells
    40. McManus DD, Ambros V. Circulating MicroRNAs in cardiovascular disease. Circulation. 2011 Nov 01; 124(18):1908-10. PMID: 22042926.
      Citations: 33     Fields:    Translation:Humans
    41. Ambros V. MicroRNAs and developmental timing. Curr Opin Genet Dev. 2011 Aug; 21(4):511-7. PMID: 21530229.
      Citations: 151     Fields:    Translation:HumansAnimals
    42. Karp X, Hammell M, Ow MC, Ambros V. Effect of life history on microRNA expression during C. elegans development. RNA. 2011 Apr; 17(4):639-51. PMID: 21343388.
      Citations: 37     Fields:    Translation:AnimalsCells
    43. Karp X, Ambros V. The developmental timing regulator HBL-1 modulates the dauer formation decision in Caenorhabditis elegans. Genetics. 2011 Jan; 187(1):345-53. PMID: 20980238.
      Citations: 10     Fields:    Translation:AnimalsCells
    44. Ambros V. MicroRNAs: genetically sensitized worms reveal new secrets. Curr Biol. 2010 Jul 27; 20(14):R598-600. PMID: 20656201.
      Citations: 12     Fields:    Translation:Animals
    45. Zheng G, Ambros V, Li WH. Inhibiting miRNA in Caenorhabditis elegans using a potent and selective antisense reagent. Silence. 2010 Apr 01; 1(1):9. PMID: 20359322.
      Citations:    
    46. Ambros V. In the tradition of science: an interview with Victor Ambros. PLoS Genet. 2010 Mar 05; 6(3):e1000853. PMID: 20221254.
      Citations:    Fields:    Translation:Animals
    47. Ambros V. pRB/CKI pathways at the interface of cell cycle and development. Cell Cycle. 2009 Nov 01; 8(21):3433-4. PMID: 19823011.
      Citations:    Fields:    Translation:AnimalsCells
    48. Hammell CM, Karp X, Ambros V. A feedback circuit involving let-7-family miRNAs and DAF-12 integrates environmental signals and developmental timing in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2009 Nov 03; 106(44):18668-73. PMID: 19828440.
      Citations: 79     Fields:    Translation:Animals
    49. Hong X, Hammell M, Ambros V, Cohen SM. Immunopurification of Ago1 miRNPs selects for a distinct class of microRNA targets. Proc Natl Acad Sci U S A. 2009 Sep 01; 106(35):15085-90. PMID: 19706460.
      Citations: 30     Fields:    Translation:AnimalsCells
    50. Zhang L, Hammell M, Kudlow BA, Ambros V, Han M. Systematic analysis of dynamic miRNA-target interactions during C. elegans development. Development. 2009 Sep; 136(18):3043-55. PMID: 19675127.
      Citations: 31     Fields:    Translation:Animals
    51. Hammell CM, Lubin I, Boag PR, Blackwell TK, Ambros V. nhl-2 Modulates microRNA activity in Caenorhabditis elegans. Cell. 2009 Mar 06; 136(5):926-38. PMID: 19269369.
      Citations: 102     Fields:    Translation:AnimalsCells
    52. Martinez NJ, Ow MC, Reece-Hoyes JS, Barrasa MI, Ambros VR, Walhout AJ. Genome-scale spatiotemporal analysis of Caenorhabditis elegans microRNA promoter activity. Genome Res. 2008 Dec; 18(12):2005-15. PMID: 18981266.
      Citations: 141     Fields:    Translation:AnimalsCells
    53. Ambros V. The evolution of our thinking about microRNAs. Nat Med. 2008 Oct; 14(10):1036-40. PMID: 18841144.
      Citations: 80     Fields:    Translation:HumansAnimalsCells
    54. Martinez NJ, Ow MC, Barrasa MI, Hammell M, Sequerra R, Doucette-Stamm L, Roth FP, Ambros VR, Walhout AJ. A C. elegans genome-scale microRNA network contains composite feedback motifs with high flux capacity. Genes Dev. 2008 Sep 15; 22(18):2535-49. PMID: 18794350.
      Citations: 131     Fields:    Translation:AnimalsCells
    55. Ow MC, Martinez NJ, Olsen PH, Silverman HS, Barrasa MI, Conradt B, Walhout AJ, Ambros V. The FLYWCH transcription factors FLH-1, FLH-2, and FLH-3 repress embryonic expression of microRNA genes in C. elegans. Genes Dev. 2008 Sep 15; 22(18):2520-34. PMID: 18794349.
      Citations: 36     Fields:    Translation:AnimalsCells
    56. Hammell M, Long D, Zhang L, Lee A, Carmack CS, Han M, Ding Y, Ambros V. mirWIP: microRNA target prediction based on microRNA-containing ribonucleoprotein-enriched transcripts. Nat Methods. 2008 Sep; 5(9):813-9. PMID: 19160516.
      Citations: 106     Fields:    Translation:AnimalsCells
    57. Sokol NS, Xu P, Jan YN, Ambros V. Drosophila let-7 microRNA is required for remodeling of the neuromusculature during metamorphosis. Genes Dev. 2008 Jun 15; 22(12):1591-6. PMID: 18559475.
      Citations: 116     Fields:    Translation:AnimalsCells
    58. Miska EA, Alvarez-Saavedra E, Abbott AL, Lau NC, Hellman AB, McGonagle SM, Bartel DP, Ambros VR, Horvitz HR. Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genet. 2007 Dec; 3(12):e215. PMID: 18085825.
      Citations: 279     Fields:    Translation:AnimalsCells
    59. Hinas A, Reimeg?rd J, Wagner EG, Nellen W, Ambros VR, S?derbom F. The small RNA repertoire of Dictyostelium discoideum and its regulation by components of the RNAi pathway. Nucleic Acids Res. 2007; 35(20):6714-26. PMID: 17916577.
      Citations: 33     Fields:    Translation:AnimalsCells
    60. Ambros V, Chen X. The regulation of genes and genomes by small RNAs. Development. 2007 May; 134(9):1635-41. PMID: 17409118.
      Citations: 124     Fields:    Translation:HumansAnimals
    61. Long D, Lee R, Williams P, Chan CY, Ambros V, Ding Y. Potent effect of target structure on microRNA function. Nat Struct Mol Biol. 2007 Apr; 14(4):287-94. PMID: 17401373.
      Citations: 215     Fields:    Translation:AnimalsCells
    62. Gaur A, Jewell DA, Liang Y, Ridzon D, Moore JH, Chen C, Ambros VR, Israel MA. Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res. 2007 Mar 15; 67(6):2456-68. PMID: 17363563.
      Citations: 340     Fields:    Translation:HumansCells
    63. Ambros V. The 2007 George W. Beadle Medal. Robert K. Herman. Genetics. 2007 Feb; 175(2):465-6. PMID: 17322351.
      Citations:    Fields:    Translation:Animals
    64. Lee RC, Hammell CM, Ambros V. Interacting endogenous and exogenous RNAi pathways in Caenorhabditis elegans. RNA. 2006 Apr; 12(4):589-97. PMID: 16489184.
      Citations: 107     Fields:    Translation:AnimalsCells
    65. Hristova M, Birse D, Hong Y, Ambros V. The Caenorhabditis elegans heterochronic regulator LIN-14 is a novel transcription factor that controls the developmental timing of transcription from the insulin/insulin-like growth factor gene ins-33 by direct DNA binding. Mol Cell Biol. 2005 Dec; 25(24):11059-72. PMID: 16314527.
      Citations: 33     Fields:    Translation:AnimalsCells
    66. Karp X, Ambros V. Developmental biology. Encountering microRNAs in cell fate signaling. Science. 2005 Nov 25; 310(5752):1288-9. PMID: 16311325.
      Citations: 145     Fields:    Translation:AnimalsCells
    67. Kuhlmann M, Borisova BE, Kaller M, Larsson P, Stach D, Na J, Eichinger L, Lyko F, Ambros V, S?derbom F, Hammann C, Nellen W. Silencing of retrotransposons in Dictyostelium by DNA methylation and RNAi. Nucleic Acids Res. 2005; 33(19):6405-17. PMID: 16282589.
      Citations: 54     Fields:    Translation:AnimalsCells
    68. Sokol NS, Ambros V. Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth. Genes Dev. 2005 Oct 01; 19(19):2343-54. PMID: 16166373.
      Citations: 174     Fields:    Translation:AnimalsCells
    69. Abbott AL, Alvarez-Saavedra E, Miska EA, Lau NC, Bartel DP, Horvitz HR, Ambros V. The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. Dev Cell. 2005 Sep; 9(3):403-14. PMID: 16139228.
      Citations: 251     Fields:    Translation:Animals
    70. Ambros V. The functions of animal microRNAs. Nature. 2004 Sep 16; 431(7006):350-5. PMID: 15372042.
      Citations: 5007     Fields:    Translation:Animals
    71. Pepper AS, McCane JE, Kemper K, Yeung DA, Lee RC, Ambros V, Moss EG. The C. elegans heterochronic gene lin-46 affects developmental timing at two larval stages and encodes a relative of the scaffolding protein gephyrin. Development. 2004 May; 131(9):2049-59. PMID: 15073154.
      Citations: 24     Fields:    Translation:AnimalsCells
    72. Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol. 2004; 5(3):R13. PMID: 15003116.
      Citations: 766     Fields:    Translation:HumansAnimalsCells
    73. Lee R, Feinbaum R, Ambros V. A short history of a short RNA. Cell. 2004 Jan 23; 116(2 Suppl):S89-92, 1 p following S96. PMID: 15055592.
      Citations: 73     Fields:    
    74. Ambros V, Lee RC. Identification of microRNAs and other tiny noncoding RNAs by cDNA cloning. Methods Mol Biol. 2004; 265:131-58. PMID: 15103073.
      Citations: 70     Fields:    Translation:AnimalsCells
    75. Carrington JC, Ambros V. Role of microRNAs in plant and animal development. Science. 2003 Jul 18; 301(5631):336-8. PMID: 12869753.
      Citations: 699     Fields:    Translation:Animals
    76. Sempere LF, Sokol NS, Dubrovsky EB, Berger EM, Ambros V. Temporal regulation of microRNA expression in Drosophila melanogaster mediated by hormonal signals and broad-Complex gene activity. Dev Biol. 2003 Jul 01; 259(1):9-18. PMID: 12812784.
      Citations: 126     Fields:    Translation:Animals
    77. Ambros V. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell. 2003 Jun 13; 113(6):673-6. PMID: 12809598.
      Citations: 584     Fields:    Translation:AnimalsCells
    78. Ambros V, Lee RC, Lavanway A, Williams PT, Jewell D. MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr Biol. 2003 May 13; 13(10):807-18. PMID: 12747828.
      Citations: 298     Fields:    Translation:AnimalsCells
    79. Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T. A uniform system for microRNA annotation. RNA. 2003 Mar; 9(3):277-9. PMID: 12592000.
      Citations: 779     Fields:    
    80. Sempere LF, Dubrovsky EB, Dubrovskaya VA, Berger EM, Ambros V. The expression of the let-7 small regulatory RNA is controlled by ecdysone during metamorphosis in Drosophila melanogaster. Dev Biol. 2002 Apr 01; 244(1):170-9. PMID: 11900466.
      Citations: 62     Fields:    Translation:AnimalsCells
    81. Ambros V. microRNAs: tiny regulators with great potential. Cell. 2001 Dec 28; 107(7):823-6. PMID: 11779458.
      Citations: 790     Fields:    Translation:Animals
    82. Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science. 2001 Oct 26; 294(5543):862-4. PMID: 11679672.
      Citations: 1070     Fields:    Translation:HumansAnimalsCells
    83. Ambros V. Development. Dicing up RNAs. Science. 2001 Aug 03; 293(5531):811-3. PMID: 11486075.
      Citations: 5     Fields:    Translation:AnimalsCells
    84. Ambros V. The temporal control of cell cycle and cell fate in Caenorhabditis elegans. Novartis Found Symp. 2001; 237:203-14; discussion 214-20. PMID: 11444045.
      Citations: 3     Fields:    Translation:Animals
    85. Ambros V. Control of developmental timing in Caenorhabditis elegans. Curr Opin Genet Dev. 2000 Aug; 10(4):428-33. PMID: 10889059.
      Citations: 42     Fields:    Translation:AnimalsCells
    86. Slack FJ, Basson M, Liu Z, Ambros V, Horvitz HR, Ruvkun G. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol Cell. 2000 Apr; 5(4):659-69. PMID: 10882102.
      Citations: 289     Fields:    Translation:AnimalsCells
    87. Hong Y, Lee RC, Ambros V. Structure and function analysis of LIN-14, a temporal regulator of postembryonic developmental events in Caenorhabditis elegans. Mol Cell Biol. 2000 Mar; 20(6):2285-95. PMID: 10688674.
      Citations: 16     Fields:    Translation:AnimalsCells
    88. Olsen PH, Ambros V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol. 1999 Dec 15; 216(2):671-80. PMID: 10642801.
      Citations: 412     Fields:    Translation:AnimalsCells
    89. Feinbaum R, Ambros V. The timing of lin-4 RNA accumulation controls the timing of postembryonic developmental events in Caenorhabditis elegans. Dev Biol. 1999 Jun 01; 210(1):87-95. PMID: 10364429.
      Citations: 60     Fields:    Translation:AnimalsCells
    90. Ambros V. Cell cycle-dependent sequencing of cell fate decisions in Caenorhabditis elegans vulva precursor cells. Development. 1999 May; 126(9):1947-56. PMID: 10101128.
      Citations: 45     Fields:    Translation:AnimalsCells
    91. Hong Y, Roy R, Ambros V. Developmental regulation of a cyclin-dependent kinase inhibitor controls postembryonic cell cycle progression in Caenorhabditis elegans. Development. 1998 Sep; 125(18):3585-97. PMID: 9716524.
      Citations: 90     Fields:    Translation:AnimalsCells
    92. Moss EG, Lee RC, Ambros V. The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell. 1997 Mar 07; 88(5):637-46. PMID: 9054503.
      Citations: 368     Fields:    Translation:AnimalsCells
    93. Euling S, Ambros V. Reversal of cell fate determination in Caenorhabditis elegans vulval development. Development. 1996 Aug; 122(8):2507-15. PMID: 8756295.
      Citations: 28     Fields:    Translation:AnimalsCells
    94. Euling S, Ambros V. Heterochronic genes control cell cycle progress and developmental competence of C. elegans vulva precursor cells. Cell. 1996 Mar 08; 84(5):667-76. PMID: 8625405.
      Citations: 36     Fields:    Translation:AnimalsCells
    95. Rougvie AE, Ambros V. The heterochronic gene lin-29 encodes a zinc finger protein that controls a terminal differentiation event in Caenorhabditis elegans. Development. 1995 Aug; 121(8):2491-500. PMID: 7671813.
      Citations: 57     Fields:    Translation:HumansAnimalsCells
    96. Liu Z, Kirch S, Ambros V. The Caenorhabditis elegans heterochronic gene pathway controls stage-specific transcription of collagen genes. Development. 1995 Aug; 121(8):2471-8. PMID: 7671811.
      Citations: 39     Fields:    Translation:AnimalsCells
    97. Ambros V, Moss EG. Heterochronic genes and the temporal control of C. elegans development. Trends Genet. 1994 Apr; 10(4):123-7. PMID: 8029828.
      Citations: 17     Fields:    Translation:Animals
    98. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993 Dec 03; 75(5):843-54. PMID: 8252621.
      Citations: 4913     Fields:    Translation:AnimalsCells
    99. Mello CC, Kramer JM, Stinchcomb D, Ambros V. Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 1991 Dec; 10(12):3959-70. PMID: 1935914.
      Citations: 1439     Fields:    Translation:AnimalsCells
    100. Liu Z, Ambros V. Alternative temporal control systems for hypodermal cell differentiation in Caenorhabditis elegans. Nature. 1991 Mar 14; 350(6314):162-5. PMID: 26502479.
      Citations: 26     Fields:    
    101. Papp A, Rougvie AE, Ambros V. Molecular cloning of lin-29, a heterochronic gene required for the differentiation of hypodermal cells and the cessation of molting in C.elegans. Nucleic Acids Res. 1991 Feb 11; 19(3):623-30. PMID: 1672752.
      Citations: 7     Fields:    Translation:AnimalsCells
    102. Liu ZC, Ambros V. Heterochronic genes control the stage-specific initiation and expression of the dauer larva developmental program in Caenorhabditis elegans. Genes Dev. 1989 Dec; 3(12B):2039-49. PMID: 2628162.
      Citations: 24     Fields:    Translation:Animals
    103. Hodgkin J, Papp A, Pulak R, Ambros V, Anderson P. A new kind of informational suppression in the nematode Caenorhabditis elegans. Genetics. 1989 Oct; 123(2):301-13. PMID: 2583479.
      Citations: 142     Fields:    Translation:Animals
    104. Ambros V. A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C. elegans. Cell. 1989 Apr 07; 57(1):49-57. PMID: 2702689.
      Citations: 116     Fields:    Translation:Animals
    105. Ruvkun G, Ambros V, Coulson A, Waterston R, Sulston J, Horvitz HR. Molecular genetics of the Caenorhabditis elegans heterochronic gene lin-14. Genetics. 1989 Mar; 121(3):501-16. PMID: 2565854.
      Citations: 27     Fields:    Translation:AnimalsCells
    106. Ambros V, Horvitz HR. The lin-14 locus of Caenorhabditis elegans controls the time of expression of specific postembryonic developmental events. Genes Dev. 1987 Jun; 1(4):398-414. PMID: 3678829.
      Citations: 55     Fields:    Translation:Animals
    107. Ambros V, Horvitz HR. Heterochronic mutants of the nematode Caenorhabditis elegans. Science. 1984 Oct 26; 226(4673):409-16. PMID: 6494891.
      Citations: 326     Fields:    Translation:Animals
    108. Ambros V, Pettersson RF, Baltimore D. An enzymatic activity in uninfected cells that cleaves the linkage between poliovirion RNA and the 5' terminal protein. Cell. 1978 Dec; 15(4):1439-46. PMID: 215328.
      Citations: 34     Fields:    Translation:Cells
    Ambros's Networks
    Click the
    Explore
    buttons for more information and interactive visualizations!
    Concepts (347)
    Explore
    _
    Co-Authors (6)
    Explore
    _
    Similar People (60)
    Explore
    _
    Same Department Expand Description
    Explore
    _
    Physical Neighbors
    _