Header Logo

John E Harris MD, PhD

TitleChair and Professor
Endowed TitleLambiĀ and Sarah Adams Chair in Genetic Research
InstitutionUMass Chan Medical School
DepartmentDermatology
AddressUMass Chan Medical School
55 Lake Avenue North
Worcester MA 01655
vCardDownload vCard
    Other Positions
    InstitutionT.H. Chan School of Medicine
    DepartmentDermatology

    InstitutionMorningside Graduate School of Biomedical Sciences
    DepartmentImmunology and Microbiology Program

    InstitutionMorningside Graduate School of Biomedical Sciences
    DepartmentInterdisciplinary Graduate Program

    InstitutionMorningside Graduate School of Biomedical Sciences
    DepartmentMD/PhD Program

    InstitutionMorningside Graduate School of Biomedical Sciences
    DepartmentMillennium MD/PhD Program


    Collapse Biography 
    Collapse education and training
    Gordon College, Wenham, MA, United StatesBSPremedicine
    University of Massachusetts Medical School, Worcester, MA, United StatesMD
    University of Massachusetts Medical School, Worcester, MA, United StatesPHDMolecular Medicine

    Collapse Overview 
    Collapse Summary
    Interests: Vitiligo, autoimmunity, immunology, translational research
    Collapse overview


    Investigating contributions of both melanocytes and immune cells to vitiligo



    John HarrisThe goal of my laboratory is to better understand what causes vitiligo in order to develop new treatments.



    Vitiligo is an autoimmune disease that results in the appearance of white spots on the skin. It affects 0.5-2% of the population (about 1/100 people) regardless of race and gender, and can be psychologically devastating for patients due to its disfiguring appearance. The white spots are due to the destruction of melanocytes by T cells. As a physician-scientist, I treat patients with vitiligo and also manage a laboratory that is focused on studying the disease.



    In the lab, we focus on two aspects of vitiligo:



    VIT HandsFirst, we study how abnormal, “stressed” melanocytes alert the immune system to their presence. We believe that, once stressed, melanocytes produce signals that recruit T cells to the skin, which then find the melanocytes and kill them.



    Second, we study how the T cells detect these signals, enter the skin, find the melanocytes, and kill them.



    We use four major systems to answer these questions:





    First, we use a mouse model of vitiligo that we developed, where the mice get spots of vitiligo on their ears, tails, feet and noses. Examining these mice from many angles, their disease looks very much like human vitiligo. The benefit of this system is the powerful tools available to study diseases in mice.

    Second, we are developing humanized mouse models of vitiligo, where we transfer human T cells, or both T cells and skin, from vitiligo patients to immunosuppressed mice that permit the growth of human tissues. The benefit of this system is the ability to study human T cells and skin, and it has the potential to test new treatments on human tissues before attempting clinical trials.

    Third, since I manage a specialty clinic in vitiligo, I regularly collect skin and blood from willing donors to study these processes directly. The benefit of this approach is that we can study the key cells that participate in vitiligo directly from patients, without variables that may change them, including their transfer into mice.

    Fourth, we are conducting a clinical trial to test an investigational new drug as a treatment for vitiligo.



    Using these systems, we have identified one of the critical pathways used by T cells to crawl into the skin and find melanocytes. The first signal in the pathway is IFN-g, a protein made by immune cells, which acts as a powerful master switch to turn on immune responses. IFN-g then turns on CXCL10, which is required for the ability of T cells to find melanocytes and kill them. Imagine an ant that has found a new piece of food on the ground. The ant then lays a chemical trail that others follow to the food. CXCL10 acts like that chemical trail, promoting both proper localization of T cells to “find” the melanocytes, and also increases their determination to kill them. There are existing drugs that have been developed by pharmaceutical companies that block the ability of CXCL10 to function in humans, and so they may be effective treatments in vitiligo. (See PDF of this article: Click Here)




    We have also begun to identify the signals produced by stressed melanocytes that activate immune cells. We believe that studying the communication between stressed melanocytes and immune cells will tell us how vitiligo gets started in the first place, and how to better prevent its onset and spread. Also part of this project is better understanding how chemicals in the environment cause stress in melanocytes. Certain chemicals are well known to cause vitiligo and make it worse, and it is likely that there are many more that we come into contact with every day (in chemical dyes, cleaning products, etc). While we can guess at which chemicals do this based on their chemical structure, we are using our systems to definitively identify the chemicals, so that patients can avoid them and companies can change the ingredients of their products.

     




     


    Collapse Rotation Projects

    Rotations:

    1. Targeting the IFN-?-chemokine axis for treatment of vitiligo: We are using our newly developed mouse model and human tissues from patients with vitiligo to identify the cytokines and chemokines that are expressed within the depigmenting skin and which skin cells produce them. We are using genetically modified mouse strains (knockouts, conditional knockouts, fluorescent reporter strains), and cytokine and chemokine neutralizing antibodies to identify the key proteins required for disease. This data will permit us to rationally develop and test new therapeutic agents.
    2. Understanding the proinflammatory signals generated by melanocytes under cellular stress. Melanocytes from vitiligo patients have intrinsic abnormalities, including cellular stress evidenced by increased production of reactive oxygen species (ROS) and activation of the unfolded protein response (UPR). The immune system has evolved to recognize this stress as damage-associated molecular patterns (DAMPs), which activate innate immunity. We are using human cells and tissues to determine how cellular stress, innate immunity, and adaptive immunity cooperate to initiate and perpetuate depigmentation in vitiligo.
    3. Developing a humanized mouse model of immune-skin interactions to serve as a pre-clinical bridge to clinical studies: We are developing a humanized mouse model of skin disease that consists of an immunodeficient mouse strain as a host for an autologous human skin graft and immune reconstitution in order to study mechanisms of inflammation in the skin, including allergic contact dermatitis, response to infection, tumor immunotherapy, and autoimmunity, all within a fully human environment. This model system will act as a pre-clinical bridge between mouse models and human clinical trials, providing an opportunity to test new treatments on human cells and tissues prior to initiating trials on patients.
    4. Tracking real-time autoreactive T cell migration and interactions within the skin: We are using fluorescently/bioluminescently tagged CD8 T cells to track their movements and interactions within the skin in live mice, using real-time confocal microscopy and bioluminescent imaging. Initial studies will focus on the role of cytokines and chemokines in T cell migration within the skin.
    5. Clinical trial to test a novel treatment for vitiligo: We are in the early stages of developing a clinical trial based on insights developed from our animal data to test a novel drug for its ability to treat vitiligo.



    Rotations:




    1. Targeting the IFN-g-chemokine axis for treatment of vitiligo: We are using our newly developed mouse model and human tissues from patients with vitiligo to identify the cytokines and chemokines that are expressed within the depigmenting skin and which skin cells produce them. We are using genetically modified mouse strains (knockouts, conditional knockouts, fluorescent reporter strains), and cytokine and chemokine neutralizing antibodies to identify the key proteins required for disease. This data will permit us to rationally develop and test new therapeutic agents.


    2. Understanding the proinflammatory signals generated by melanocytes under cellular stress. Melanocytes from vitiligo patients have intrinsic abnormalities, including cellular stress evidenced by increased production of reactive oxygen species (ROS) and activation of the unfolded protein response (UPR). The immune system has evolved to recognize this stress as damage-associated molecular patterns (DAMPs), which activate innate immunity. We are using human cells and tissues to determine how cellular stress, innate immunity, and adaptive immunity cooperate to initiate and perpetuate depigmentation in vitiligo.


    3. Developing a humanized mouse model of immune-skin interactions to serve as a pre-clinical bridge to clinical studies: We are developing a humanized mouse model of skin disease that consists of an immunodeficient mouse strain as a host for an autologous human skin graft and immune reconstitution in order to study mechanisms of inflammation in the skin, including allergic contact dermatitis, response to infection, tumor immunotherapy, and autoimmunity, all within a fully human environment. This model system will act as a pre-clinical bridge between mouse models and human clinical trials, providing an opportunity to test new treatments on human cells and tissues prior to initiating trials on patients.


    4. Tracking autoreactive T cell interactions within the skin: We are using fluorescently tagged CD8 T cells to track their cellular interactions within the skin using confocal microscopy. Future studies will adapt this model to investigate real-time migration and other movements of these cells within compartments of the skin.


    5. Clinical trial to test a novel treatment for vitiligo: We recently completed a clinical trial based on insights developed from our animal data to test a novel drug for its ability to treat vitiligo.





    Collapse Bibliographic 
    Collapse selected publications
    Publications listed below are automatically derived from MEDLINE/PubMed and other sources, which might result in incorrect or missing publications. Faculty can login to make corrections and additions.
    Newest   |   Oldest   |   Most Cited   |   Most Discussed   |   Timeline   |   Field Summary   |   Plain Text
    PMC Citations indicate the number of times the publication was cited by articles in PubMed Central, and the Altmetric score represents citations in news articles and social media. (Note that publications are often cited in additional ways that are not shown here.) Fields are based on how the National Library of Medicine (NLM) classifies the publication's journal and might not represent the specific topic of the publication. Translation tags are based on the publication type and the MeSH terms NLM assigns to the publication. Some publications (especially newer ones and publications not in PubMed) might not yet be assigned Field or Translation tags.) Click a Field or Translation tag to filter the publications.
    1. Frisoli ML, Ko WC, Martinez N, Afshari K, Wang Y, Garber M, Harris JE. Single-Cell RNA Sequencing Reveals Molecular Signatures that Distinguish Allergic from Irritant Contact Dermatitis. J Invest Dermatol. 2024 Sep 26. PMID: 39341550.
      Citations:    
    2. Harris JE, Pandya AG, Lebwohl M, Hamzavi IH, Grimes P, Gottlieb AB, Sofen HL, Moore AY, Wang M, Kornacki D, Butler K, Rosmarin D. Safety and efficacy of ruxolitinib cream for the treatment of vitiligo: A randomised controlled trial secondary analysis at 3?years. Skin Health Dis. 2024 Dec; 4(6):e404. PMID: 39624731.
      Citations:    
    3. Passeron T, Harris JE, Pandya AG, Seneschal J, Grimes P, Kornacki D, Wang M, Ezzedine K, Rosmarin D. Repigmentation by body region in patients with vitiligo treated with ruxolitinib cream over 52?weeks. J Eur Acad Dermatol Venereol. 2024 Jul 16. PMID: 39011655.
      Citations:    
    4. MacDonald EA, Katz EL, Pearson TF, Harris JE. Performing Suction Blister Skin Biopsies. Curr Protoc. 2024 Jun; 4(6):e1073. PMID: 38924322.
      Citations:    
    5. Passeron T, Ezzedine K, Hamzavi I, van Geel N, Schlosser BJ, Wu X, Huang X, Soliman AM, Rosmarin D, Harris JE, Camp HS, Pandya AG. Once-daily upadacitinib versus placebo in adults with extensive non-segmental vitiligo: a phase 2, multicentre, randomised, double-blind, placebo-controlled, dose-ranging study. EClinicalMedicine. 2024 Jul; 73:102655. PMID: 38873632.
      Citations:    
    6. Sharifzadeh A, Gochnauer H, Harris JE. Improvement in light tolerance with oral Polypodium leucotomos extract in a patient with nonsegmental vitiligo treated with narrow-band UV-B phototherapy. JAAD Case Rep. 2024 Jul; 49:65-67. PMID: 38883171.
      Citations:    
    7. Frisoli ML, Richmond JM, Harris JE. IL-12/IL-23-Independent Function of BATF3-Dependent Dendritic Cells Is Required for Initiation of Disease in a Mouse Model of Vitiligo. J Invest Dermatol. 2024 Nov; 144(11):2574-2577.e2. PMID: 38642799.
      Citations:    
    8. Delva C, Pearson TF, Harris JE. Advancements in Targeted Therapies for Vitiligo: Prioritizing Equity in Drug Development. Cutis. 2024 Apr; 113(4):156-158. PMID: 38820107.
      Citations:    
    9. Tang Q, Gross KY, Fakih HH, Jackson SO, Zain U I Abideen M, Monopoli KR, Blanchard C, Bouix-Peter C, Portal T, Harris JE, Khvorova A, Alterman JF. Multispecies-targeting siRNAs for the modulation of JAK1 in the skin. Mol Ther Nucleic Acids. 2024 Mar 12; 35(1):102117. PMID: 38304729.
      Citations:    
    10. Shakiba S, Haddadi NS, Afshari K, Lubov JE, Raef HS, Li R, Yildiz-Altay ?, Daga M, Refat MA, Kim E, de Laflin JG, Akabane A, Sherman S, MacDonald E, Strassner JP, Zhang L, Leon M, Baer CE, Dresser K, Liang Y, Whitley JB, Skopelja-Gardner S, Harris JE, Deng A, Vesely MD, Rashighi M, Richmond J. Spatial characterization of interface dermatitis in cutaneous lupus reveals novel chemokine ligand-receptor pairs that drive disease. bioRxiv. 2024 Jan 06. PMID: 38260617.
      Citations:    
    11. Tang Q, Fakih HH, Zain Ui Abideen M, Hildebrand SR, Afshari K, Gross KY, Sousa J, Maebius AS, Bartholdy C, S?gaard PP, Jackerott M, Hariharan V, Summers A, Fan X, Okamura K, Monopoli KR, Cooper DA, Echeverria D, Bramato B, McHugh N, Furgal RC, Dresser K, Winter SJ, Biscans A, Chuprin J, Haddadi NS, Sherman S, Yildiz-Altay ?, Rashighi M, Richmond JM, Bouix-Peter C, Blanchard C, Clauss A, Alterman JF, Khvorova A, Harris JE. Rational design of a JAK1-selective siRNA inhibitor for the modulation of autoimmunity in the skin. Nat Commun. 2023 11 04; 14(1):7099. PMID: 37925520.
      Citations: 2     Fields:    Translation:HumansAnimalsCells
    12. Hamzavi IH, Bibeau K, Grimes P, Harris JE, van Geel N, Parsad D, Tulpule M, Gardner J, Valle Y, Tlhong Matewa G, LaFiura C, Ren H, Ezzedine K. Exploring the natural and treatment history of vitiligo: perceptions of patients and healthcare professionals from the global VALIANT study. Br J Dermatol. 2023 10 25; 189(5):569-577. PMID: 37493275.
      Citations: 1     Fields:    Translation:Humans
    13. Trepanowski N, Yim RM, Wetstone R, MacDonald E, Servattalab S, Jacob-George S, Harris JE. Vitiligo progression in a patient undergoing romosozumab treatment for osteoporosis. JAAD Case Rep. 2023 Dec; 42:26-30. PMID: 37965188.
      Citations:    
    14. Pearson TF, Harris JE. Expanding the White Armor of Vitiligo. J Invest Dermatol. 2024 01; 144(1):5-7. PMID: 37831052.
      Citations:    Fields:    Translation:Humans
    15. Bibeau K, Ezzedine K, Harris JE, van Geel N, Grimes P, Parsad D, Tulpule M, Gardner J, Valle Y, Tlhong Matewa G, LaFiura C, Lindley A, Ren H, Hamzavi IH. Mental Health and Psychosocial Quality-of-Life Burden Among Patients With Vitiligo: Findings From the Global VALIANT Study. JAMA Dermatol. 2023 10 01; 159(10):1124-1128. PMID: 37647073.
      Citations: 2     Fields:    Translation:Humans
    16. Seneschal J, Speeckaert R, Ta?eb A, Wolkerstorfer A, Passeron T, Pandya AG, Lim HW, Ezzedine K, Zhou Y, Xiang F, Thng S, Tanemura A, Suzuki T, Rosmarin D, Rodrigues M, Raboobee N, Pliszewski G, Parsad D, Oiso N, Monteiro P, Meurant JM, Maquignon N, Lui H, Le Poole C, Leone G, Lee AY, Lan E, Katayama I, Huggins R, Oh SH, Harris JE, Hamzavi IH, Gupta S, Grimes P, Goh BK, Ghia D, Esmat S, Eleftheriadou V, B?hm M, Benzekri L, Bekkenk M, Bae JM, Alomar A, Abdallah M, Picardo M, van Geel N. Worldwide expert recommendations for the diagnosis and management of vitiligo: Position statement from the international Vitiligo Task Force-Part 2: Specific treatment recommendations. J Eur Acad Dermatol Venereol. 2023 Nov; 37(11):2185-2195. PMID: 37715487.
      Citations: 3     Fields:    Translation:Humans
    17. Howell MD, Kuo FI, Rumberger B, Boarder E, Sun K, Butler K, Harris JE, Grimes P, Rosmarin D. Baseline Levels of Circulating Inflammatory Biomarkers Stratify Patients with Vitiligo Who Significantly Repigment after Treatment with Ruxolitinib Cream. JID Innov. 2023 Nov; 3(6):100230. PMID: 37840766.
      Citations:    
    18. Refat MA, Strassner JP, Frisoli ML, Rashighi M, Richmond J, Nada E, Saleh R, El-Hamd MA, Goldberg D, Mahmoud BH, Harris JE. Lesional CD8+ T-Cell Number Predicts Surgical Outcomes of Melanocyte-Keratinocyte Transplantation Surgery for Vitiligo. J Invest Dermatol. 2023 11; 143(11):2275-2282.e6. PMID: 37478900.
      Citations:    Fields:    
    19. Vanderweil SG, Yang C, Pagani K, Chuprin J, Bernhard J, Harris JE. Assessing risk amid uncertainty inside and outside the dermatology clinic. J Am Acad Dermatol. 2023 10; 89(4):864-866. PMID: 37394142.
      Citations:    Fields:    Translation:Humans
    20. Ren H, Akabane AL, Kelleher K, Halverstam C, Hicks M, Schachter JR, Silverman R, Chachkin S, Sherman-Bergman S, Harris JE, Kuohung V. Vitiligo induced by dupilumab treatment: A case series. J Eur Acad Dermatol Venereol. 2023 11; 37(11):2259-2261. PMID: 37114348.
      Citations:    Fields:    Translation:Humans
    21. Garza-Mayers AC, Paquette GM, Harris JE, Wiss K. Narrowband ultraviolet B phototherapy in pediatric vitiligo: A retrospective study. J Am Acad Dermatol. 2023 07; 89(1):135-136. PMID: 36796727.
      Citations:    Fields:    Translation:Humans
    22. Paquette GM, Sherman S, Akabane A, Harris JE. Adolescent extra-truncal progressive macular hypomelanosis. Pediatr Dermatol. 2023 Jul-Aug; 40(4):702-705. PMID: 36744793.
      Citations:    Fields:    Translation:Humans
    23. Richmond JM, Patel D, Watanabe T, Chen HW, Martyanov V, Werner G, Garg M, Haddadi NS, Refat MA, Mahmoud BH, Wong LD, Dresser K, Deng A, Zhu JL, McAlpine W, Hosler GA, Feghali-Bostwick CA, Whitfield ML, Harris JE, Torok KS, Jacobe HT. CXCL9 Links Skin Inflammation and Fibrosis through CXCR3-Dependent Upregulation of Col1a1 in Fibroblasts. J Invest Dermatol. 2023 07; 143(7):1138-1146.e12. PMID: 36708947.
      Citations: 2     Fields:    Translation:HumansAnimalsCells
    24. Zhou JY, Sarkar MK, Okamura K, Harris JE, Gudjonsson JE, Fitzgerald KA. Activation of the NLRP1 inflammasome in human keratinocytes by the dsDNA mimetic poly(dA:dT). Proc Natl Acad Sci U S A. 2023 01 31; 120(5):e2213777120. PMID: 36693106.
      Citations: 6     Fields:    Translation:HumansCells
    25. Abuabara K, Eichenfield LF, Bissonnette R, Silverberg JI, Bagel J, Guttman-Yassky E, Thaci D, Simpson EL, Harris JE, Krueger J, Myers DE, Gamelli A, Milutinovic M, Parneix A, Crawford JM, Hildebrand JS, Munoz B, Paller AS. Real-world evidence on atopic dermatitis: Baseline characteristics and predictors of treatment choice in the TARGET cohort. J Am Acad Dermatol. 2023 08; 89(2):345-347. PMID: 36521798.
      Citations:    Fields:    Translation:Humans
    26. Ezzedine K, Peeva E, Yamaguchi Y, Cox LA, Banerjee A, Han G, Hamzavi I, Ganesan AK, Picardo M, Tha?i D, Harris JE, Bae JM, Tsukamoto K, Sinclair R, Pandya AG, Sloan A, Yu D, Gandhi K, Vincent MS, King B. Efficacy and safety of oral ritlecitinib for the treatment of active nonsegmental vitiligo: A randomized phase 2b clinical trial. J Am Acad Dermatol. 2023 02; 88(2):395-403. PMID: 36370907.
      Citations: 9     Fields:    Translation:Humans
    27. Rosmarin D, Passeron T, Pandya AG, Grimes P, Harris JE, Desai SR, Lebwohl M, Ruer-Mulard M, Seneschal J, Wolkerstorfer A, Kornacki D, Sun K, Butler K, Ezzedine K. Two Phase 3, Randomized, Controlled Trials of Ruxolitinib Cream for Vitiligo. N Engl J Med. 2022 10 20; 387(16):1445-1455. PMID: 36260792.
      Citations: 21     Fields:    Translation:Humans
    28. Hsueh YC, Wang Y, Riding RL, Catalano DE, Lu YJ, Richmond JM, Siegel DL, Rusckowski M, Stanley JR, Harris JE. A Keratinocyte-Tethered Biologic Enables Location-Precise Treatment in Mouse Vitiligo. J Invest Dermatol. 2022 12; 142(12):3294-3303. PMID: 35787400.
      Citations: 2     Fields:    Translation:AnimalsCells
    29. Pandya AG, Harris JE, Lebwohl M, Hamzavi IH, Butler K, Kuo FI, Wei S, Rosmarin D. Addition of Narrow-Band UVB Phototherapy to?Ruxolitinib Cream in Patients With Vitiligo. J Invest Dermatol. 2022 12; 142(12):3352-3355.e4. PMID: 35787401.
      Citations: 4     Fields:    Translation:Humans
    30. Essien KI, Katz EL, Strassner JP, Harris JE. Regulatory T Cells Require CCR6 for Skin Migration and Local Suppression of Vitiligo. J Invest Dermatol. 2022 12; 142(12):3158-3166.e7. PMID: 35777498.
      Citations: 4     Fields:    Translation:HumansAnimalsCells
    31. Singh R, Cohen JL, Astudillo M, Harris JE, Freeman EE. Vitiligo of the arm after COVID-19 vaccination. JAAD Case Rep. 2022 Oct; 28:142-144. PMID: 35756074.
      Citations:    
    32. Tang Q, Sousa J, Echeverria D, Fan X, Hsueh YC, Afshari K, MeHugh N, Cooper DA, Vangjeli L, Monopoli K, Okamura K, Biscans A, Clauss A, Harris JE, Khvorova A. RNAi-based modulation of IFN-? signaling in skin. Mol Ther. 2022 08 03; 30(8):2709-2721. PMID: 35477658.
      Citations: 5     Fields:    Translation:Animals
    33. Fatima S, Abbas T, Refat MA, Harris JE, Lim HW, Hamzavi IH, Mohammad TF. Systemic therapies in vitiligo: a review. Int J Dermatol. 2023 Mar; 62(3):279-289. PMID: 35133006.
      Citations: 1     Fields:    Translation:Humans
    34. Pauli C, Kienh?fer M, G?llner S, M?ller-Tidow C. Epitranscriptomic modifications in acute myeloid leukemia: m6A and 2'-O-methylation as targets for novel therapeutic strategies. Biol Chem. 2021 Nov 25; 402(12):1531-1546. PMID: 34634841.
      Citations: 2     Fields:    Translation:HumansCells
    35. Patel A, Sener A, Lee SY. Reversed diastolic flow in a renal transplant due to ureteric obstruction from intraluminal blood clot. J Clin Ultrasound. 2022 May; 50(4):521-524. PMID: 34634838.
      Citations:    Fields:    Translation:Humans
    36. Gellatly KJ, Strassner JP, Essien K, Refat MA, Murphy RL, Coffin-Schmitt A, Pandya AG, Tovar-Garza A, Frisoli ML, Fan X, Ding X, Kim EE, Abbas Z, McDonel P, Garber M, Harris JE. scRNA-seq of human vitiligo reveals complex networks of subclinical immune activation and a role for CCR5 in Treg function. Sci Transl Med. 2021 Sep 08; 13(610):eabd8995. PMID: 34516831.
      Citations: 24     Fields:    Translation:HumansCells
    37. Fukuda K, Okamura K, Riding RL, Fan X, Afshari K, Haddadi NS, McCauley SM, Guney MH, Luban J, Funakoshi T, Yaguchi T, Kawakami Y, Khvorova A, Fitzgerald KA, Harris JE. AIM2 regulates anti-tumor immunity and is a viable therapeutic target for melanoma. J Exp Med. 2021 09 06; 218(9). PMID: 34325468.
      Citations: 24     Fields:    Translation:HumansAnimalsCells
    38. Seneschal J, Harris JE, Le Poole IC, Passeron T, Speeckaert R, Boniface K. Editorial: Immunology of Vitiligo. Front Immunol. 2021; 12:711080. PMID: 34249018.
      Citations: 3     Fields:    Translation:Humans
    39. Ko WC, Li L, Young TR, McLean-Mandell RE, Deng AC, Vanguri VK, Dresser K, Harris JE. Gene Expression Profiling in the Skin Reveals Strong Similarities between Subacute and Chronic Cutaneous Lupus that Are Distinct from Lupus Nephritis. J Invest Dermatol. 2021 12; 141(12):2808-2819. PMID: 34153327.
      Citations: 10     Fields:    Translation:Humans
    40. Hamzavi I, Rosmarin D, Harris JE, Pandya AG, Lebwohl M, Gottlieb AB, Butler K, Kuo FI, Sun K, Grimes P. Efficacy of ruxolitinib cream in vitiligo by patient characteristics and affected body areas: Descriptive subgroup analyses from a phase 2, randomized, double-blind trial. J Am Acad Dermatol. 2022 06; 86(6):1398-1401. PMID: 34089797.
      Citations: 7     Fields:    Translation:HumansCTClinical Trials
    41. Rodrigues M, Pandya AG, Hamzavi I, Ezzedine K, Bekkenk MW, Harris JE. Treatment recommendations for patients with vitiligo during COVID-19. Australas J Dermatol. 2021 08; 62(3):e481-e482. PMID: 34028796.
      Citations:    Fields:    Translation:HumansCells
    42. Ryan GE, Harris JE, Richmond JM. Resident Memory T Cells in Autoimmune Skin Diseases. Front Immunol. 2021; 12:652191. PMID: 34012438.
      Citations: 23     Fields:    Translation:HumansCells
    43. Okamura K, Garber M, Harris JE. Gaining Insight into Vitiligo Genetics through the Lens of a Large Epidemiologic Study. J Invest Dermatol. 2021 04; 141(4):718-721. PMID: 33752810.
      Citations:    Fields:    Translation:Humans
    44. Katz EL, Harris JE. Translational Research in Vitiligo. Front Immunol. 2021; 12:624517. PMID: 33737930.
      Citations: 10     Fields:    Translation:HumansAnimalsCells
    45. Rosmarin D, Butler K, Kuo F, Harris JE. Ruxolitinib cream for the treatment of vitiligo - Authors' reply. Lancet. 2020 11 28; 396(10264):1736. PMID: 33248494.
      Citations: 1     Fields:    Translation:Humans
    46. Riding RL, Richmond JM, Fukuda K, Harris JE. Type I interferon signaling limits viral vector priming of CD8+ T cells during initiation of vitiligo and melanoma immunotherapy. Pigment Cell Melanoma Res. 2021 07; 34(4):683-695. PMID: 33040466.
      Citations: 2     Fields:    Translation:AnimalsCells
    47. Rosmarin D, Pandya AG, Lebwohl M, Grimes P, Hamzavi I, Gottlieb AB, Butler K, Kuo F, Sun K, Ji T, Howell MD, Harris JE. Ruxolitinib cream for treatment of vitiligo: a randomised, controlled, phase 2 trial. Lancet. 2020 07 11; 396(10244):110-120. PMID: 32653055.
      Citations: 58     Fields:    Translation:HumansCTClinical Trials
    48. Azzolino V, Zapata L, Garg M, Gjoni M, Riding RL, Strassner JP, Richmond JM, Harris JE. Jak Inhibitors Reverse Vitiligo in Mice but Do Not Deplete Skin Resident Memory T Cells. J Invest Dermatol. 2021 01; 141(1):182-184.e1. PMID: 32464150.
      Citations: 11     Fields:    Translation:AnimalsCells
    49. Lyons AB, Ghia D, Abdallah M, Abdel-Malek Z, Esmat S, Ezzedine K, Grimes P, Harris JE, Lui H, Manga P, Mi QS, Pandya A, Parsad D, Passeron T, Picardo M, Seneschal J, Silpa-Archa N, Taieb A, Xiang F, Lim HW, Hamzavi IH. Proceeding Report of the Second Vitiligo International Symposium-November 9-10, 2018, Detroit, Michigan, USA. Pigment Cell Melanoma Res. 2020 07; 33(4):637-641. PMID: 31984599.
      Citations: 1     Fields:    Translation:HumansCells
    50. Frisoli ML, Essien K, Harris JE. Vitiligo: Mechanisms of Pathogenesis and Treatment. Annu Rev Immunol. 2020 04 26; 38:621-648. PMID: 32017656.
      Citations: 75     Fields:    Translation:HumansAnimals
    51. Damsky W, Patel D, Garelli CJ, Garg M, Wang A, Dresser K, Deng A, Harris JE, Richmond J, King B. Jak Inhibition Prevents Bleomycin-Induced Fibrosis in Mice and Is Effective in Patients with Morphea. J Invest Dermatol. 2020 07; 140(7):1446-1449.e4. PMID: 31954727.
      Citations: 12     Fields:    Translation:HumansAnimals
    52. van Geel N, Hamzavi I, Kohli I, Wolkerstorfer A, Lim HW, Bae JM, Lui H, Harris JE, Pandya AG, Thng Tien Guan S, Abdallah M, Esmat S, Seneschal J, Speeckaert R, Grine L, Kang HY, Raboobee N, Xiang LF, Bekkenk M, Picardo M, Taieb A. Standardizing serial photography for assessing and monitoring vitiligo: A core set of international recommendations for essential clinical and technical specifications. J Am Acad Dermatol. 2020 Dec; 83(6):1639-1646. PMID: 31678332.
      Citations: 4     Fields:    Translation:Humans
    53. Riding RL, Harris JE. The Role of Memory CD8+ T Cells in Vitiligo. J Immunol. 2019 07 01; 203(1):11-19. PMID: 31209143.
      Citations: 45     Fields:    Translation:HumansAnimalsCells
    54. van Geel N, Wolkerstorfer A, Ezzedine K, Pandya AG, Bekkenk M, Grine L, Van Belle S, Lommerts JE, Hamzavi I, Harris JE, Eleftheriadou V, Esmat S, Kang HY, Kumarasinghe P, Lan CE, Parsad D, Raboobee N, Flora Xiang L, Suzuki T, Prinsen CA, Taieb A, Picardo M, Speeckaert R. Validation of a physician global assessment tool for vitiligo extent: Results of an international vitiligo expert meeting. Pigment Cell Melanoma Res. 2019 09; 32(5):728-733. PMID: 30945409.
      Citations: 4     Fields:    Translation:Humans
    55. Richmond JM, Strassner JP, Essien KI, Harris JE. T-cell positioning by chemokines in autoimmune skin diseases. Immunol Rev. 2019 05; 289(1):186-204. PMID: 30977191.
      Citations: 14     Fields:    Translation:HumansAnimalsCells
    56. Tkachenko E, Refat MA, Balzano T, Maloney ME, Harris JE. Patient satisfaction and physician productivity in shared medical appointments for vitiligo. J Am Acad Dermatol. 2019 Nov; 81(5):1150-1156. PMID: 30910662.
      Citations:    Fields:    Translation:Humans
    57. Frisoli ML, Harris JE. Treatment with Modified Heat Shock Protein Repigments Vitiligo Lesions in Sinclair Swine. J Invest Dermatol. 2018 12; 138(12):2505-2506. PMID: 30466536.
      Citations: 4     Fields:    Translation:HumansAnimalsCells
    58. Richmond JM, Strassner JP, Rashighi M, Agarwal P, Garg M, Essien KI, Pell LS, Harris JE. Resident Memory and Recirculating Memory T Cells Cooperate to Maintain Disease in a Mouse Model of Vitiligo. J Invest Dermatol. 2019 04; 139(4):769-778. PMID: 30423329.
      Citations: 44     Fields:    Translation:HumansAnimalsCells
    59. Riding RL, Richmond JM, Harris JE. Mouse Model for Human Vitiligo. Curr Protoc Immunol. 2019 02; 124(1):e63. PMID: 30253067.
      Citations: 15     Fields:    Translation:HumansAnimalsCells
    60. Richmond JM, Strassner JP, Zapata L, Garg M, Riding RL, Refat MA, Fan X, Azzolino V, Tovar-Garza A, Tsurushita N, Pandya AG, Tso JY, Harris JE. Antibody blockade of IL-15 signaling has the potential to durably reverse vitiligo. Sci Transl Med. 2018 07 18; 10(450). PMID: 30021889.
      Citations: 77     Fields:    Translation:HumansAnimalsCells
    61. Mande P, Zirak B, Ko WC, Taravati K, Bride KL, Brodeur TY, Deng A, Dresser K, Jiang Z, Ettinger R, Fitzgerald KA, Rosenblum MD, Harris JE, Marshak-Rothstein A. Fas ligand promotes an inducible TLR-dependent model of cutaneous lupus-like inflammation. J Clin Invest. 2018 07 02; 128(7):2966-2978. PMID: 29889098.
      Citations: 28     Fields:    Translation:HumansAnimalsCells
    62. Korta DZ, Christiano AM, Bergfeld W, Duvic M, Ellison A, Fu J, Harris JE, Hordinsky MK, King B, Kranz D, Mackay-Wiggan J, McMichael A, Norris DA, Price V, Shapiro J, Atanaskova Mesinkovska N. Alopecia areata is a medical disease. J Am Acad Dermatol. 2018 04; 78(4):832-834. PMID: 29548423.
      Citations: 14     Fields:    Translation:Humans
    63. Kranz D, Ellison A, Mesinkovska NA, Christiano AM, Hordinsky MK, Harris JE. Building and Crossing the Translational Bridge: 2016?Alopecia Areata Research Summit Highlights. J Investig Dermatol Symp Proc. 2018 01; 19(1):S3-S8. PMID: 29273102.
      Citations:    Fields:    Translation:HumansAnimals
    64. Fukuda K, Harris JE. Vitiligo-like depigmentation in patients receiving programmed cell death-1 inhibitor reflects active vitiligo. J Am Acad Dermatol. 2018 01; 78(1):e15-e16. PMID: 29241799.
      Citations: 3     Fields:    Translation:Humans
    65. Liu LY, Strassner JP, Refat MA, Harris JE, King BA. Repigmentation in vitiligo using the Janus kinase inhibitor tofacitinib may require concomitant light exposure. J Am Acad Dermatol. 2017 Oct; 77(4):675-682.e1. PMID: 28823882.
      Citations: 51     Fields:    Translation:Humans
    66. Frisoli ML, Harris JE. Vitiligo: Mechanistic insights lead to novel treatments. J Allergy Clin Immunol. 2017 Sep; 140(3):654-662. PMID: 28778794.
      Citations: 33     Fields:    Translation:HumansAnimalsCells
    67. Rodrigues M, Ezzedine K, Hamzavi I, Pandya AG, Harris JE. New discoveries in the pathogenesis and classification of vitiligo. J Am Acad Dermatol. 2017 Jul; 77(1):1-13. PMID: 28619550.
      Citations: 104     Fields:    Translation:Humans
    68. Rodrigues M, Ezzedine K, Hamzavi I, Pandya AG, Harris JE. Current and emerging treatments for vitiligo. J Am Acad Dermatol. 2017 Jul; 77(1):17-29. PMID: 28619557.
      Citations: 28     Fields:    Translation:Humans
    69. Harris JE. Chemical-Induced Vitiligo. Dermatol Clin. 2017 Apr; 35(2):151-161. PMID: 28317525.
      Citations: 27     Fields:    Translation:Humans
    70. Rashighi M, Harris JE. Vitiligo Pathogenesis and Emerging Treatments. Dermatol Clin. 2017 Apr; 35(2):257-265. PMID: 28317534.
      Citations: 52     Fields:    Translation:HumansCells
    71. Harris JE. Optimizing Vitiligo Management: Past, Present, and Future. Dermatol Clin. 2017 Apr; 35(2):xi. PMID: 28317535.
      Citations: 4     Fields:    Translation:Humans
    72. Strassner JP, Rashighi M, Ahmed Refat M, Richmond JM, Harris JE. Suction blistering the lesional skin of vitiligo patients reveals useful biomarkers of disease activity. J Am Acad Dermatol. 2017 May; 76(5):847-855.e5. PMID: 28259440.
      Citations: 34     Fields:    Translation:HumansCells
    73. Mohammad TF, Al-Jamal M, Hamzavi IH, Harris JE, Leone G, Cabrera R, Lim HW, Pandya AG, Esmat SM. The Vitiligo Working Group recommendations for narrowband ultraviolet B light phototherapy treatment of vitiligo. J Am Acad Dermatol. 2017 May; 76(5):879-888. PMID: 28216034.
      Citations: 24     Fields:    Translation:Humans
    74. Richmond JM, Masterjohn E, Chu R, Tedstone J, Youd ME, Harris JE. CXCR3 Depleting Antibodies Prevent and Reverse Vitiligo in Mice. J Invest Dermatol. 2017 04; 137(4):982-985. PMID: 28126463.
      Citations: 40     Fields:    Translation:AnimalsCells
    75. Vanderweil SG, Amano S, Ko WC, Richmond JM, Kelley M, Senna MM, Pearson A, Chowdary S, Hartigan C, Barton B, Harris JE. A double-blind, placebo-controlled, phase-II clinical trial to evaluate oral simvastatin as a treatment for vitiligo. J Am Acad Dermatol. 2017 Jan; 76(1):150-151.e3. PMID: 27986135.
      Citations: 9     Fields:    Translation:HumansCTClinical Trials
    76. Rashighi M, Harris JE. Sampling Serum in Patients With Vitiligo to Measure Disease Activity in the Skin. JAMA Dermatol. 2016 11 01; 152(11):1187-1188. PMID: 27557448.
      Citations:    Fields:    Translation:Humans
    77. Strassner JP, Harris JE. Understanding mechanisms of autoimmunity through translational research in vitiligo. Curr Opin Immunol. 2016 12; 43:81-88. PMID: 27764715.
      Citations: 23     Fields:    Translation:HumansAnimalsCells
    78. Chong SZ, Evrard M, Devi S, Chen J, Lim JY, See P, Zhang Y, Adrover JM, Lee B, Tan L, Li JL, Liong KH, Phua C, Balachander A, Boey A, Liebl D, Tan SM, Chan JK, Balabanian K, Harris JE, Bianchini M, Weber C, Duchene J, Lum J, Poidinger M, Chen Q, R?nia L, Wang CI, Larbi A, Randolph GJ, Weninger W, Looney MR, Krummel MF, Biswas SK, Ginhoux F, Hidalgo A, Bachelerie F, Ng LG. CXCR4 identifies transitional bone marrow premonocytes that replenish the mature monocyte pool for peripheral responses. J Exp Med. 2016 10 17; 213(11):2293-2314. PMID: 27811056.
      Citations: 55     Fields:    Translation:AnimalsCells
    79. Richmond JM, Bangari DS, Essien KI, Currimbhoy SD, Groom JR, Pandya AG, Youd ME, Luster AD, Harris JE. Keratinocyte-Derived Chemokines Orchestrate T-Cell Positioning in the Epidermis during Vitiligo and May Serve as Biomarkers of Disease. J Invest Dermatol. 2017 02; 137(2):350-358. PMID: 27686391.
      Citations: 65     Fields:    Translation:HumansAnimalsCells
    80. Rork JF, Rashighi M, Harris JE. Understanding autoimmunity of vitiligo and alopecia areata. Curr Opin Pediatr. 2016 08; 28(4):463-9. PMID: 27191524.
      Citations: 28     Fields:    Translation:HumansCells
    81. Rashighi M, Harris JE. Serum chemokines herald disease activity and treatment response in vitiligo patients. Br J Dermatol. 2016 Jun; 174(6):1190-1. PMID: 27317283.
      Citations: 1     Fields:    Translation:Humans
    82. Strassner JP, Rashighi M, Harris JE. Melanocytes in psoriasis: convicted culprit or bullied bystander? Pigment Cell Melanoma Res. 2016 May; 29(3):261-3. PMID: 26929278.
      Citations: 2     Fields:    Translation:HumansCells
    83. Li JL, Lim CH, Tay FW, Goh CC, Devi S, Malleret B, Lee B, Bakocevic N, Chong SZ, Evrard M, Tanizaki H, Lim HY, Russell B, Renia L, Zolezzi F, Poidinger M, Angeli V, St John AL, Harris JE, Tey HL, Tan SM, Kabashima K, Weninger W, Larbi A, Ng LG. Neutrophils Self-Regulate Immune Complex-Mediated Cutaneous Inflammation through CXCL2. J Invest Dermatol. 2016 Feb; 136(2):416-424. PMID: 26802238.
      Citations: 33     Fields:    Translation:AnimalsCells
    84. Harris JE. Cellular stress and innate inflammation in organ-specific autoimmunity: lessons learned from vitiligo. Immunol Rev. 2016 Jan; 269(1):11-25. PMID: 26683142.
      Citations: 38     Fields:    Translation:HumansAnimals
    85. Harris JE, Rashighi M, Nguyen N, Jabbari A, Ulerio G, Clynes R, Christiano AM, Mackay-Wiggan J. Rapid skin repigmentation on oral ruxolitinib in a patient with coexistent vitiligo and alopecia areata (AA). J Am Acad Dermatol. 2016 Feb; 74(2):370-1. PMID: 26685721.
      Citations: 60     Fields:    Translation:Humans
    86. Rashighi M, Harris JE. Interfering with the IFN-?/CXCL10 pathway to develop new targeted treatments for vitiligo. Ann Transl Med. 2015 Dec; 3(21):343. PMID: 26734651.
      Citations:    
    87. Harris JE. Melanocyte Regeneration in Vitiligo Requires WNT beneath their Wings. J Invest Dermatol. 2015 Dec; 135(12):2921-2923. PMID: 26569586.
      Citations: 8     Fields:    Translation:HumansCells
    88. Ezzedine K, Sheth V, Rodrigues M, Eleftheriadou V, Harris JE, Hamzavi IH, Pandya AG. Vitiligo is not a cosmetic disease. J Am Acad Dermatol. 2015 Nov; 73(5):883-5. PMID: 26475548.
      Citations: 33     Fields:    Translation:Humans
    89. Zhang R, Borges CM, Fan MY, Harris JE, Turka LA. Requirement for CD28 in Effector Regulatory T Cell Differentiation, CCR6 Induction, and Skin Homing. J Immunol. 2015 Nov 01; 195(9):4154-61. PMID: 26408668.
      Citations: 14     Fields:    Translation:AnimalsCells
    90. Wu S, Li WQ, Cho E, Harris JE, Speizer F, Qureshi AA. Use of permanent hair dyes and risk of vitiligo in women. Pigment Cell Melanoma Res. 2015 Nov; 28(6):744-6. PMID: 26212072.
      Citations: 10     Fields:    Translation:Humans
    91. Harris JE. IFN-? in Vitiligo, Is It the Fuel or the Fire? Acta Derm Venereol. 2015 Jul; 95(6):643-4. PMID: 26059003.
      Citations: 8     Fields:    Translation:HumansCells
    92. Picardo M, Dell'Anna ML, Ezzedine K, Hamzavi I, Harris JE, Parsad D, Taieb A. Vitiligo. Nat Rev Dis Primers. 2015 06 04; 1:15011. PMID: 27189851.
      Citations: 94     Fields:    Translation:HumansCells
    93. Agarwal P, Rashighi M, Essien KI, Richmond JM, Randall L, Pazoki-Toroudi H, Hunter CA, Harris JE. Simvastatin prevents and reverses depigmentation in a mouse model of vitiligo. J Invest Dermatol. 2015 Apr; 135(4):1080-1088. PMID: 25521459.
      Citations: 30     Fields:    Translation:AnimalsCells
    94. Richmond JM, Harris JE. Immunology and skin in health and disease. Cold Spring Harb Perspect Med. 2014 Dec 01; 4(12):a015339. PMID: 25452424.
      Citations: 57     Fields:    Translation:Humans
    95. Rashighi M, Agarwal P, Richmond JM, Harris TH, Dresser K, Su MW, Zhou Y, Deng A, Hunter CA, Luster AD, Harris JE. CXCL10 is critical for the progression and maintenance of depigmentation in a mouse model of vitiligo. Sci Transl Med. 2014 Feb 12; 6(223):223ra23. PMID: 24523323.
      Citations: 145     Fields:    Translation:Animals
    96. Harris JE. Vitiligo and alopecia areata: apples and oranges? Exp Dermatol. 2013 Dec; 22(12):785-9. PMID: 24131336.
      Citations: 17     Fields:    Translation:HumansCells
    97. Richmond JM, Frisoli ML, Harris JE. Innate immune mechanisms in vitiligo: danger from within. Curr Opin Immunol. 2013 Dec; 25(6):676-82. PMID: 24238922.
      Citations: 61     Fields:    Translation:HumansAnimals
    98. Malhotra N, Narayan K, Cho OH, Sylvia KE, Yin C, Melichar H, Rashighi M, Lefebvre V, Harris JE, Berg LJ, Kang J. A network of high-mobility group box transcription factors programs innate interleukin-17 production. Immunity. 2013 Apr 18; 38(4):681-93. PMID: 23562159.
      Citations: 83     Fields:    Translation:AnimalsCells
    99. Chin MS, Freniere BB, Fakhouri S, Harris JE, Lalikos JF, Crosby AJ. Cavitation rheology as a potential method for in vivo assessment of skin biomechanics. Plast Reconstr Surg. 2013 Feb; 131(2):303e-305e. PMID: 23358043.
      Citations: 3     Fields:    Translation:Humans
    100. Harris JE, Harris TH, Weninger W, Wherry EJ, Hunter CA, Turka LA. A mouse model of vitiligo with focused epidermal depigmentation requires IFN-? for autoreactive CD8? T-cell accumulation in the skin. J Invest Dermatol. 2012 Jul; 132(7):1869-76. PMID: 22297636.
      Citations: 123     Fields:    Translation:HumansAnimalsCells
    101. Harris JE, Marshak-Rothstein A. Editorial: Interfering with B cell immunity. J Leukoc Biol. 2011 Jun; 89(6):805-6. PMID: 21628334.
      Citations:    Fields:    Translation:HumansCells
    102. Ram?n HE, Cejas PJ, LaRosa D, Rahman A, Harris JE, Zhang J, Hunter C, Choi Y, Turka LA. EGR-2 is not required for in vivo CD4 T cell mediated immune responses. PLoS One. 2010 Sep 23; 5(9):e12904. PMID: 20886122.
      Citations: 10     Fields:    Translation:HumansAnimalsCells
    103. Harris JE, Seykora JT, Lee RA. Renbok phenomenon and contact sensitization in a patient with alopecia universalis. Arch Dermatol. 2010 Apr; 146(4):422-5. PMID: 20404233.
      Citations: 3     Fields:    Translation:Humans
    104. Bishop KD, Harris JE, Mordes JP, Greiner DL, Rossini AA, Czech MP, Phillips NE. Depletion of the programmed death-1 receptor completely reverses established clonal anergy in CD4(+) T lymphocytes via an interleukin-2-dependent mechanism. Cell Immunol. 2009; 256(1-2):86-91. PMID: 19230866.
      Citations: 11     Fields:    Translation:AnimalsCells
    105. Harris JE, Sutton DA, Rubin A, Wickes B, De Hoog GS, Kovarik C. Exophiala spinifera as a cause of cutaneous phaeohyphomycosis: case study and review of the literature. Med Mycol. 2009 Feb; 47(1):87-93. PMID: 19101838.
      Citations: 14     Fields:    Translation:HumansAnimals
    106. Harris JE, Bishop KD, Phillips NE, Mordes JP, Greiner DL, Rossini AA, Czech MP. Early growth response gene-2, a zinc-finger transcription factor, is required for full induction of clonal anergy in CD4+ T cells. J Immunol. 2004 Dec 15; 173(12):7331-8. PMID: 15585857.
      Citations: 60     Fields:    Translation:AnimalsCells
    107. Biener L, Harris JE, Hamilton W. Impact of the Massachusetts tobacco control programme: population based trend analysis. BMJ. 2000 Aug 05; 321(7257):351-4. PMID: 10926595.
      Citations: 40     Fields:    Translation:Humans
    108. Hemavathy K, Guru SC, Harris J, Chen JD, Ip YT. Human Slug is a repressor that localizes to sites of active transcription. Mol Cell Biol. 2000 Jul; 20(14):5087-95. PMID: 10866665.
      Citations: 56     Fields:    Translation:HumansCells
    Harris's Networks
    Click the
    Explore
    buttons for more information and interactive visualizations!
    Concepts (359)
    Explore
    _
    Co-Authors (32)
    Explore
    _
    Similar People (60)
    Explore
    _
    Same Department Expand Description
    Explore
    _
    Physical Neighbors
    _