Header Logo

Connection

Co-Authors

This is a "connection" page, showing publications co-authored by Michael Brodsky and Scot Wolfe.
Connection Strength

0.960
  1. Oikemus SR, Pfister EL, Sapp E, Chase KO, Kennington LA, Hudgens E, Miller R, Zhu LJ, Chaudhary A, Mick EO, Sena-Esteves M, Wolfe SA, DiFiglia M, Aronin N, Brodsky MH. Allele-Specific Knockdown of Mutant Huntingtin Protein via Editing at Coding Region Single Nucleotide Polymorphism Heterozygosities. Hum Gene Ther. 2022 01; 33(1-2):25-36.
    View in: PubMed
    Score: 0.202
  2. Bolukbasi MF, Gupta A, Oikemus S, Derr AG, Garber M, Brodsky MH, Zhu LJ, Wolfe SA. DNA-binding-domain fusions enhance the targeting range and precision of Cas9. Nat Methods. 2015 Dec; 12(12):1150-6.
    View in: PubMed
    Score: 0.131
  3. Enuameh MS, Asriyan Y, Richards A, Christensen RG, Hall VL, Kazemian M, Zhu C, Pham H, Cheng Q, Blatti C, Brasefield JA, Basciotta MD, Ou J, McNulty JC, Zhu LJ, Celniker SE, Sinha S, Stormo GD, Brodsky MH, Wolfe SA. Global analysis of Drosophila Cys2-His2 zinc finger proteins reveals a multitude of novel recognition motifs and binding determinants. Genome Res. 2013 Jun; 23(6):928-40.
    View in: PubMed
    Score: 0.109
  4. Zhu LJ, Christensen RG, Kazemian M, Hull CJ, Enuameh MS, Basciotta MD, Brasefield JA, Zhu C, Asriyan Y, Lapointe DS, Sinha S, Wolfe SA, Brodsky MH. FlyFactorSurvey: a database of Drosophila transcription factor binding specificities determined using the bacterial one-hybrid system. Nucleic Acids Res. 2011 Jan; 39(Database issue):D111-7.
    View in: PubMed
    Score: 0.093
  5. Noyes MB, Christensen RG, Wakabayashi A, Stormo GD, Brodsky MH, Wolfe SA. Analysis of homeodomain specificities allows the family-wide prediction of preferred recognition sites. Cell. 2008 Jun 27; 133(7):1277-89.
    View in: PubMed
    Score: 0.079
  6. Noyes MB, Meng X, Wakabayashi A, Sinha S, Brodsky MH, Wolfe SA. A systematic characterization of factors that regulate Drosophila segmentation via a bacterial one-hybrid system. Nucleic Acids Res. 2008 May; 36(8):2547-60.
    View in: PubMed
    Score: 0.077
  7. Meng X, Brodsky MH, Wolfe SA. A bacterial one-hybrid system for determining the DNA-binding specificity of transcription factors. Nat Biotechnol. 2005 Aug; 23(8):988-94.
    View in: PubMed
    Score: 0.064
  8. Ou J, Wolfe SA, Brodsky MH, Zhu LJ. motifStack for the analysis of transcription factor binding site evolution. Nat Methods. 2018 01 03; 15(1):8-9.
    View in: PubMed
    Score: 0.038
  9. Blatti C, Kazemian M, Wolfe S, Brodsky M, Sinha S. Integrating motif, DNA accessibility and gene expression data to build regulatory maps in an organism. Nucleic Acids Res. 2015 Apr 30; 43(8):3998-4012.
    View in: PubMed
    Score: 0.031
  10. Gupta A, Christensen RG, Bell HA, Goodwin M, Patel RY, Pandey M, Enuameh MS, Rayla AL, Zhu C, Thibodeau-Beganny S, Brodsky MH, Joung JK, Wolfe SA, Stormo GD. An improved predictive recognition model for Cys(2)-His(2) zinc finger proteins. Nucleic Acids Res. 2014 Apr; 42(8):4800-12.
    View in: PubMed
    Score: 0.029
  11. Cheng Q, Kazemian M, Pham H, Blatti C, Celniker SE, Wolfe SA, Brodsky MH, Sinha S. Computational identification of diverse mechanisms underlying transcription factor-DNA occupancy. PLoS Genet. 2013; 9(8):e1003571.
    View in: PubMed
    Score: 0.028
  12. Kazemian M, Pham H, Wolfe SA, Brodsky MH, Sinha S. Widespread evidence of cooperative DNA binding by transcription factors in Drosophila development. Nucleic Acids Res. 2013 Sep; 41(17):8237-52.
    View in: PubMed
    Score: 0.028
  13. Christensen RG, Enuameh MS, Noyes MB, Brodsky MH, Wolfe SA, Stormo GD. Recognition models to predict DNA-binding specificities of homeodomain proteins. Bioinformatics. 2012 Jun 15; 28(12):i84-9.
    View in: PubMed
    Score: 0.026
  14. Kazemian M, Blatti C, Richards A, McCutchan M, Wakabayashi-Ito N, Hammonds AS, Celniker SE, Kumar S, Wolfe SA, Brodsky MH, Sinha S. Quantitative analysis of the Drosophila segmentation regulatory network using pattern generating potentials. PLoS Biol. 2010 Aug 17; 8(8).
    View in: PubMed
    Score: 0.023
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.