Header Logo

Sharon B Cantor PhD

TitleProfessor
InstitutionUMass Chan Medical School
DepartmentMolecular, Cell and Cancer Biology
AddressUMass Chan Medical School
364 Plantation Street LRB
Worcester MA 01605
Phone508-856-4421
vCardDownload vCard
    Other Positions
    InstitutionT.H. Chan School of Medicine
    DepartmentMolecular, Cell and Cancer Biology

    InstitutionMorningside Graduate School of Biomedical Sciences
    DepartmentCancer Biology

    InstitutionMorningside Graduate School of Biomedical Sciences
    DepartmentInterdisciplinary Graduate Program

    InstitutionMorningside Graduate School of Biomedical Sciences
    DepartmentMD/PhD Program

    InstitutionMorningside Graduate School of Biomedical Sciences
    DepartmentPostbaccalaureate Research Education Program


    Collapse Biography 
    Collapse education and training
    University of Michigan, Ann Arbor, Ann Arbor, MI, United StatesBSBiology
    Sackler School of Graduate Biomedical Sciences, Boston, MA, United StatesPHDBiochemistry

    Collapse Overview 
    Collapse overview

    Sharon Cantor's Lab Website

    Hereditary Breast Cancer

    Research in our group is focused on understanding how cells normally function to maintain genomic integrity and suppress cancer. In particular, we focus on the hereditary breast and ovarian cancer genes, BRCA1, BRCA2 and FANCJ (also known as BACH1 or BRIP1). FANCJ was named the BRCA1 Associated C-terminal Helicase (BACH1) because of its direct interaction with the C-terminal BRCA1-BRCT repeats and its ability to unwind the strands of DNA in an energy-dependent reaction. Human genetic studies resulted in the identification of two early-onset breast cancer patients with germ-line sequence changes in the FANCJ coding region. When these sequence changes were studied in vitro, both mutations resulted in a defective FANCJ protein. Interestingly, the (P47A) mutant disrupted and the (M299I) mutant enhanced the enzyme activity implicating that too little or too much enzyme activity predisposes to disease.

    Similar to BRCA2, FANCJ is also mutated in the cancer prone syndrome, Fanconi anemia (FA). FA is a chromosomal instability syndrome characterized by cellular hypersensitivity to DNA crosslinking agents, such as cisplatin. FA is a multi-genetic disease with at least 13 complementation groups identified and referred to as FA-A through FA-N. BRCA2 is the FANCD1 gene mutated in the FA-D1 complementation group whereas FANCJ is mutated in the FA-J complementation group. So far, FA associated mutations in FANCJ appear to be enzyme inactivating or disrupt FANCJ expression.

    Research indicates that proteins functioning in the so-called, FA-BRCA pathway suppress cancer because of roles in preserving the integrity of the genome. The FA-BRCA proteins function to repair DNA lesions, such as DNA inter-strand crosslinks through several activities including the promotion of homologous recombination (HR). HR is a relatively error-free mechanism to repair DNA double strand breaks. In addition, the FA-BRCA pathway has roles in promoting DNA damage tolerance through translesion synthesis, a typically error-prone mechanism. By functioning together in large complexes, the FA-BRCA proteins can reverse toxic DNA crosslinks with minimal error generation and restart replication forks.

    The laboratory is interested in a range of repair-related topics including (i) the role of FANCJ in DNA repair, DNA damage tolerance, and checkpoint signaling and how these functions contribute to tumor suppression (ii) how FANCJ function is regulated by direct interactions with BRCA1 and MLH1, a mismatch repair protein, (iii) the relationship between FANCJ, BRCA1, and MLH1 in DNA crosslink repair, (iv) identifying novel FANCJ protein modifications or interacting partners that contribute to the function of FANCJ in the DNA damage response and (v) understanding the underlying defects associated with loss of function of proteins in the BRCA-FA pathway and whether these defects can be suppressed.

    The long-term objective of our research is to use our basic understanding of the FA-BRCA pathway to identify clinical applications in the treatment of FA-BRCA associated cancers or syndromes.

     


    Collapse Rotation Projects

    The laboratory is interested in a range of DNA replication/repair-related topics including (i) Defining biomarkers of “BRCAness” that signifies deficiency in the hereditary breast/ovarian cancer genes, BRCA1 or BRCA2, (ii) Targeting BRCAness as a replication gap vulnerability, (iii) Defining why replication proficiency requires the FANCJ helicase disengage mismatch repair proteins, (iv) Determining if suppressing gaps improves the health of Fanconi anemia patient cells, (v) Hunting down the cancer vulnerability that defines curability, (vi) performing functional genomic screens to uncover mechanisms regulating chemotherapy resistance.

     


    Collapse Post Docs

    A post-doctoral position is available immediately to study the role of genes found in a genome-wide RNAi screen to regulate the cellular response to the chemotherapy agent, cisplatin. The goal is to determine whether these genes function as tumor suppressor and/or regulate the mechanism of DNA repair processing.  The laboratory is interested in understanding the role of hereditary cancer genes of the BRCA-Fanconi anemia pathway in DNA damage repair and tumor suppression.  We seek motivated candidates with a PhD and background in cancer cell biology.  Experience in mouse cancer models is desirable. The exceptional training environment within the Department of Cancer Biology at UMASS Medical School offers a rigorous and interactive research environment covering several aspects of tumor biology.  Applicants should have excellent communication skills, and ability to conduct research independently and as a team. To apply, please send your CV with bibliography, a brief description of research experience and contact information for at least two references via email. 



    Collapse Bibliographic 
    Collapse selected publications
    Publications listed below are automatically derived from MEDLINE/PubMed and other sources, which might result in incorrect or missing publications. Faculty can login to make corrections and additions.
    Newest   |   Oldest   |   Most Cited   |   Most Discussed   |   Timeline   |   Field Summary   |   Plain Text
    PMC Citations indicate the number of times the publication was cited by articles in PubMed Central, and the Altmetric score represents citations in news articles and social media. (Note that publications are often cited in additional ways that are not shown here.) Fields are based on how the National Library of Medicine (NLM) classifies the publication's journal and might not represent the specific topic of the publication. Translation tags are based on the publication type and the MeSH terms NLM assigns to the publication. Some publications (especially newer ones and publications not in PubMed) might not yet be assigned Field or Translation tags.) Click a Field or Translation tag to filter the publications.
    1. Peng M, Xie J, Ucher A, Stavnezer J, Cantor SB. Crosstalk between BRCA-Fanconi anemia and mismatch repair pathways prevents MSH2-dependent aberrant DNA damage responses. EMBO J. 2014 Aug 01; 33(15):1698-712. PMID: 24966277.
      Citations: 30     Fields:    Translation:HumansAnimalsCells
    Cantor's Networks
    Click the
    Explore
    buttons for more information and interactive visualizations!
    Concepts (21)
    Explore
    _
    Similar People (60)
    Explore
    _
    Same Department Expand Description
    Explore
    _
    Physical Neighbors
    _