Header Logo

Connection

Honghuang Lin to Artificial Intelligence

This is a "connection" page, showing publications Honghuang Lin has written about Artificial Intelligence.
Connection Strength

0.691
  1. Lin HH, Han LY, Yap CW, Xue Y, Liu XH, Zhu F, Chen YZ. Prediction of factor Xa inhibitors by machine learning methods. J Mol Graph Model. 2007 Sep; 26(2):505-18.
    View in: PubMed
    Score: 0.218
  2. Amini S, Zhang L, Hao B, Gupta A, Song M, Karjadi C, Lin H, Kolachalama VB, Au R, Paschalidis IC. An Artificial Intelligence-Assisted Method for Dementia Detection Using Images from?the Clock Drawing Test. J Alzheimers Dis. 2021; 83(2):581-589.
    View in: PubMed
    Score: 0.142
  3. Zhang GL, Lin HH, Keskin DB, Reinherz EL, Brusic V. Dana-Farber repository for machine learning in immunology. J Immunol Methods. 2011 Nov 30; 374(1-2):18-25.
    View in: PubMed
    Score: 0.074
  4. Han LY, Ma XH, Lin HH, Jia J, Zhu F, Xue Y, Li ZR, Cao ZW, Ji ZL, Chen YZ. A support vector machines approach for virtual screening of active compounds of single and multiple mechanisms from large libraries at an improved hit-rate and enrichment factor. J Mol Graph Model. 2008 Jun; 26(8):1276-86.
    View in: PubMed
    Score: 0.058
  5. Li H, Yap CW, Ung CY, Xue Y, Li ZR, Han LY, Lin HH, Chen YZ. Machine learning approaches for predicting compounds that interact with therapeutic and ADMET related proteins. J Pharm Sci. 2007 Nov; 96(11):2838-60.
    View in: PubMed
    Score: 0.057
  6. Han L, Cui J, Lin H, Ji Z, Cao Z, Li Y, Chen Y. Recent progresses in the application of machine learning approach for predicting protein functional class independent of sequence similarity. Proteomics. 2006 Jul; 6(14):4023-37.
    View in: PubMed
    Score: 0.052
  7. Han LY, Zheng CJ, Lin HH, Cui J, Li H, Zhang HL, Tang ZQ, Chen YZ. Prediction of functional class of novel plant proteins by a statistical learning method. New Phytol. 2005 Oct; 168(1):109-21.
    View in: PubMed
    Score: 0.049
  8. Schnabel RB, Marinelli EA, Arbelo E, Boriani G, Boveda S, Buckley CM, Camm AJ, Casadei B, Chua W, Dagres N, de Melis M, Desteghe L, Diederichsen SZ, Duncker D, Eckardt L, Eisert C, Engler D, Fabritz L, Freedman B, Gillet L, Goette A, Guasch E, Svendsen JH, Hatem SN, Haeusler KG, Healey JS, Heidbuchel H, Hindricks G, Hobbs FDR, H?bner T, Kotecha D, Krekler M, Leclercq C, Lewalter T, Lin H, Linz D, Lip GYH, L?chen ML, Lucassen W, Malaczynska-Rajpold K, Massberg S, Merino JL, Meyer R, Mont L, Myers MC, Neubeck L, Niiranen T, Oeff M, Oldgren J, Potpara TS, Psaroudakis G, P?rerfellner H, Ravens U, Rienstra M, Rivard L, Scherr D, Schotten U, Shah D, Sinner MF, Smolnik R, Steinbeck G, Steven D, Svennberg E, Thomas D, True Hills M, van Gelder IC, Vardar B, Pal? E, Wakili R, Wegscheider K, Wieloch M, Willems S, Witt H, Ziegler A, Daniel Zink M, Kirchhof P. Early diagnosis and better rhythm management to improve outcomes in patients with atrial fibrillation: the 8th AFNET/EHRA consensus conference. Europace. 2023 02 08; 25(1):6-27.
    View in: PubMed
    Score: 0.041
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.