Header Logo

Connection

Victor Ambros to Caenorhabditis elegans

This is a "connection" page, showing publications Victor Ambros has written about Caenorhabditis elegans.
Connection Strength

10.419
  1. Mirza Z, Walhout AJM, Ambros V. A bacterial pathogen induces developmental slowing by high reactive oxygen species and mitochondrial dysfunction in Caenorhabditis elegans. Cell Rep. 2023 10 31; 42(10):113189.
    View in: PubMed
    Score: 0.512
  2. Nelson C, Ambros V. A cohort of Caenorhabditis species lacking the highly conserved let-7 microRNA. G3 (Bethesda). 2021 04 23; 11(3).
    View in: PubMed
    Score: 0.432
  3. Vasquez-Rifo A, Veksler-Lublinsky I, Cheng Z, Ausubel FM, Ambros V. The Pseudomonas aeruginosa accessory genome elements influence virulence towards Caenorhabditis elegans. Genome Biol. 2019 12 10; 20(1):270.
    View in: PubMed
    Score: 0.393
  4. Ilbay O, Ambros V. Pheromones and Nutritional Signals Regulate the Developmental Reliance on let-7 Family MicroRNAs in C.?elegans. Curr Biol. 2019 06 03; 29(11):1735-1745.e4.
    View in: PubMed
    Score: 0.378
  5. Choi S, Ambros V. The C. elegans heterochronic gene lin-28 coordinates the timing of hypodermal and somatic gonadal programs for hermaphrodite reproductive system morphogenesis. Development. 2019 03 07; 146(5).
    View in: PubMed
    Score: 0.373
  6. Nelson C, Ambros V. Trans-splicing of the C. elegans let-7 primary transcript developmentally regulates let-7 microRNA biogenesis and let-7 family microRNA activity. Development. 2019 03 04; 146(5).
    View in: PubMed
    Score: 0.372
  7. Ambros V, Ruvkun G. Recent Molecular Genetic Explorations of Caenorhabditis elegans MicroRNAs. Genetics. 2018 07; 209(3):651-673.
    View in: PubMed
    Score: 0.355
  8. McJunkin K, Ambros V. A microRNA family exerts maternal control on sex determination in C. elegans. Genes Dev. 2017 02 15; 31(4):422-437.
    View in: PubMed
    Score: 0.323
  9. Ren Z, Veksler-Lublinsky I, Morrissey D, Ambros V. Staufen Negatively Modulates MicroRNA Activity in Caenorhabditis elegans. G3 (Bethesda). 2016 05 03; 6(5):1227-37.
    View in: PubMed
    Score: 0.306
  10. Zinovyeva AY, Veksler-Lublinsky I, Vashisht AA, Wohlschlegel JA, Ambros VR. Caenorhabditis elegans ALG-1 antimorphic mutations uncover functions for Argonaute in microRNA guide strand selection and passenger strand disposal. Proc Natl Acad Sci U S A. 2015 Sep 22; 112(38):E5271-80.
    View in: PubMed
    Score: 0.292
  11. Burke SL, Hammell M, Ambros V. Robust Distal Tip Cell Pathfinding in the Face of Temperature Stress Is Ensured by Two Conserved microRNAS in Caenorhabditis elegans. Genetics. 2015 Aug; 200(4):1201-18.
    View in: PubMed
    Score: 0.288
  12. Ren Z, Ambros VR. Caenorhabditis elegans microRNAs of the let-7 family act in innate immune response circuits and confer robust developmental timing against pathogen stress. Proc Natl Acad Sci U S A. 2015 May 05; 112(18):E2366-75.
    View in: PubMed
    Score: 0.285
  13. Harandi OF, Ambros VR. Control of stem cell self-renewal and differentiation by the heterochronic genes and the cellular asymmetry machinery in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2015 Jan 20; 112(3):E287-96.
    View in: PubMed
    Score: 0.279
  14. McJunkin K, Ambros V. The embryonic mir-35 family of microRNAs promotes multiple aspects of fecundity in Caenorhabditis elegans. G3 (Bethesda). 2014 Jul 21; 4(9):1747-54.
    View in: PubMed
    Score: 0.270
  15. Ambros V. Victor Ambros: the broad scope of microRNAs. Interview by Caitlin Sedwick. J Cell Biol. 2013 May 13; 201(4):492-3.
    View in: PubMed
    Score: 0.249
  16. Karp X, Ambros V. Dauer larva quiescence alters the circuitry of microRNA pathways regulating cell fate progression in C. elegans. Development. 2012 Jun; 139(12):2177-86.
    View in: PubMed
    Score: 0.233
  17. Ambros V. MicroRNAs and developmental timing. Curr Opin Genet Dev. 2011 Aug; 21(4):511-7.
    View in: PubMed
    Score: 0.216
  18. Karp X, Hammell M, Ow MC, Ambros V. Effect of life history on microRNA expression during C. elegans development. RNA. 2011 Apr; 17(4):639-51.
    View in: PubMed
    Score: 0.213
  19. Karp X, Ambros V. The developmental timing regulator HBL-1 modulates the dauer formation decision in Caenorhabditis elegans. Genetics. 2011 Jan; 187(1):345-53.
    View in: PubMed
    Score: 0.209
  20. Ambros V. MicroRNAs: genetically sensitized worms reveal new secrets. Curr Biol. 2010 Jul 27; 20(14):R598-600.
    View in: PubMed
    Score: 0.205
  21. Ambros V. pRB/CKI pathways at the interface of cell cycle and development. Cell Cycle. 2009 Nov 01; 8(21):3433-4.
    View in: PubMed
    Score: 0.195
  22. Hammell CM, Karp X, Ambros V. A feedback circuit involving let-7-family miRNAs and DAF-12 integrates environmental signals and developmental timing in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2009 Nov 03; 106(44):18668-73.
    View in: PubMed
    Score: 0.194
  23. Hammell CM, Lubin I, Boag PR, Blackwell TK, Ambros V. nhl-2 Modulates microRNA activity in Caenorhabditis elegans. Cell. 2009 Mar 06; 136(5):926-38.
    View in: PubMed
    Score: 0.186
  24. Ow MC, Martinez NJ, Olsen PH, Silverman HS, Barrasa MI, Conradt B, Walhout AJ, Ambros V. The FLYWCH transcription factors FLH-1, FLH-2, and FLH-3 repress embryonic expression of microRNA genes in C. elegans. Genes Dev. 2008 Sep 15; 22(18):2520-34.
    View in: PubMed
    Score: 0.180
  25. Hammell M, Long D, Zhang L, Lee A, Carmack CS, Han M, Ding Y, Ambros V. mirWIP: microRNA target prediction based on microRNA-containing ribonucleoprotein-enriched transcripts. Nat Methods. 2008 Sep; 5(9):813-9.
    View in: PubMed
    Score: 0.180
  26. Lee RC, Hammell CM, Ambros V. Interacting endogenous and exogenous RNAi pathways in Caenorhabditis elegans. RNA. 2006 Apr; 12(4):589-97.
    View in: PubMed
    Score: 0.151
  27. Hristova M, Birse D, Hong Y, Ambros V. The Caenorhabditis elegans heterochronic regulator LIN-14 is a novel transcription factor that controls the developmental timing of transcription from the insulin/insulin-like growth factor gene ins-33 by direct DNA binding. Mol Cell Biol. 2005 Dec; 25(24):11059-72.
    View in: PubMed
    Score: 0.149
  28. Karp X, Ambros V. Developmental biology. Encountering microRNAs in cell fate signaling. Science. 2005 Nov 25; 310(5752):1288-9.
    View in: PubMed
    Score: 0.148
  29. Abbott AL, Alvarez-Saavedra E, Miska EA, Lau NC, Bartel DP, Horvitz HR, Ambros V. The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. Dev Cell. 2005 Sep; 9(3):403-14.
    View in: PubMed
    Score: 0.146
  30. Duan Y, Li L, Panzade GP, Piton A, Zinovyeva A, Ambros V. Modeling neurodevelopmental disorder-associated human AGO1 mutations in Caenorhabditis elegans Argonaute alg-1. Proc Natl Acad Sci U S A. 2024 Mar 05; 121(10):e2308255121.
    View in: PubMed
    Score: 0.132
  31. Carrington JC, Ambros V. Role of microRNAs in plant and animal development. Science. 2003 Jul 18; 301(5631):336-8.
    View in: PubMed
    Score: 0.126
  32. Ambros V. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell. 2003 Jun 13; 113(6):673-6.
    View in: PubMed
    Score: 0.125
  33. Ambros V, Lee RC, Lavanway A, Williams PT, Jewell D. MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr Biol. 2003 May 13; 13(10):807-18.
    View in: PubMed
    Score: 0.124
  34. Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science. 2001 Oct 26; 294(5543):862-4.
    View in: PubMed
    Score: 0.112
  35. Ilbay O, Nelson C, Ambros V. C.?elegans LIN-28 controls temporal cell fate progression by regulating LIN-46 expression via the 5' UTR of lin-46 mRNA. Cell Rep. 2021 09 07; 36(10):109670.
    View in: PubMed
    Score: 0.111
  36. Ambros V. Development: Keeping Time with Transcription. Curr Biol. 2021 02 22; 31(4):R212-R214.
    View in: PubMed
    Score: 0.107
  37. Ambros V. The temporal control of cell cycle and cell fate in Caenorhabditis elegans. Novartis Found Symp. 2001; 237:203-14; discussion 214-20.
    View in: PubMed
    Score: 0.106
  38. Vasquez-Rifo A, Ricci EP, Ambros V. Pseudomonas aeruginosa cleaves the decoding center of Caenorhabditis elegans ribosomes. PLoS Biol. 2020 12; 18(12):e3000969.
    View in: PubMed
    Score: 0.105
  39. Ambros V. Control of developmental timing in Caenorhabditis elegans. Curr Opin Genet Dev. 2000 Aug; 10(4):428-33.
    View in: PubMed
    Score: 0.103
  40. Hong Y, Lee RC, Ambros V. Structure and function analysis of LIN-14, a temporal regulator of postembryonic developmental events in Caenorhabditis elegans. Mol Cell Biol. 2000 Mar; 20(6):2285-95.
    View in: PubMed
    Score: 0.100
  41. Olsen PH, Ambros V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol. 1999 Dec 15; 216(2):671-80.
    View in: PubMed
    Score: 0.098
  42. Ilbay O, Ambros V. Regulation of nuclear-cytoplasmic partitioning by the lin-28-lin-46 pathway reinforces microRNA repression of HBL-1 to confer robust cell-fate progression in C. elegans. Development. 2019 11 06; 146(21).
    View in: PubMed
    Score: 0.098
  43. Feinbaum R, Ambros V. The timing of lin-4 RNA accumulation controls the timing of postembryonic developmental events in Caenorhabditis elegans. Dev Biol. 1999 Jun 01; 210(1):87-95.
    View in: PubMed
    Score: 0.095
  44. Ambros V. Cell cycle-dependent sequencing of cell fate decisions in Caenorhabditis elegans vulva precursor cells. Development. 1999 May; 126(9):1947-56.
    View in: PubMed
    Score: 0.094
  45. Hong Y, Roy R, Ambros V. Developmental regulation of a cyclin-dependent kinase inhibitor controls postembryonic cell cycle progression in Caenorhabditis elegans. Development. 1998 Sep; 125(18):3585-97.
    View in: PubMed
    Score: 0.090
  46. Moss EG, Lee RC, Ambros V. The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell. 1997 Mar 07; 88(5):637-46.
    View in: PubMed
    Score: 0.081
  47. Euling S, Ambros V. Reversal of cell fate determination in Caenorhabditis elegans vulval development. Development. 1996 Aug; 122(8):2507-15.
    View in: PubMed
    Score: 0.078
  48. Euling S, Ambros V. Heterochronic genes control cell cycle progress and developmental competence of C. elegans vulva precursor cells. Cell. 1996 Mar 08; 84(5):667-76.
    View in: PubMed
    Score: 0.076
  49. Liu Z, Kirch S, Ambros V. The Caenorhabditis elegans heterochronic gene pathway controls stage-specific transcription of collagen genes. Development. 1995 Aug; 121(8):2471-8.
    View in: PubMed
    Score: 0.073
  50. Rougvie AE, Ambros V. The heterochronic gene lin-29 encodes a zinc finger protein that controls a terminal differentiation event in Caenorhabditis elegans. Development. 1995 Aug; 121(8):2491-500.
    View in: PubMed
    Score: 0.073
  51. Zinovyeva AY, Bouasker S, Simard MJ, Hammell CM, Ambros V. Mutations in conserved residues of the C. elegans microRNA Argonaute ALG-1 identify separable functions in ALG-1 miRISC loading and target repression. PLoS Genet. 2014 Apr; 10(4):e1004286.
    View in: PubMed
    Score: 0.066
  52. Ambros V, Moss EG. Heterochronic genes and the temporal control of C. elegans development. Trends Genet. 1994 Apr; 10(4):123-7.
    View in: PubMed
    Score: 0.066
  53. Zou Y, Chiu H, Zinovyeva A, Ambros V, Chuang CF, Chang C. Developmental decline in neuronal regeneration by the progressive change of two intrinsic timers. Science. 2013 Apr 19; 340(6130):372-376.
    View in: PubMed
    Score: 0.062
  54. Boss? GD, R?egger S, Ow MC, Vasquez-Rifo A, Rondeau EL, Ambros VR, Grosshans H, Simard MJ. The decapping scavenger enzyme DCS-1 controls microRNA levels in Caenorhabditis elegans. Mol Cell. 2013 Apr 25; 50(2):281-7.
    View in: PubMed
    Score: 0.062
  55. Zhang L, Hammell M, Kudlow BA, Ambros V, Han M. Systematic analysis of dynamic miRNA-target interactions during C. elegans development. Development. 2009 Sep; 136(18):3043-55.
    View in: PubMed
    Score: 0.048
  56. Martinez NJ, Ow MC, Reece-Hoyes JS, Barrasa MI, Ambros VR, Walhout AJ. Genome-scale spatiotemporal analysis of Caenorhabditis elegans microRNA promoter activity. Genome Res. 2008 Dec; 18(12):2005-15.
    View in: PubMed
    Score: 0.045
  57. Martinez NJ, Ow MC, Barrasa MI, Hammell M, Sequerra R, Doucette-Stamm L, Roth FP, Ambros VR, Walhout AJ. A C. elegans genome-scale microRNA network contains composite feedback motifs with high flux capacity. Genes Dev. 2008 Sep 15; 22(18):2535-49.
    View in: PubMed
    Score: 0.045
  58. Miska EA, Alvarez-Saavedra E, Abbott AL, Lau NC, Hellman AB, McGonagle SM, Bartel DP, Ambros VR, Horvitz HR. Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genet. 2007 Dec; 3(12):e215.
    View in: PubMed
    Score: 0.043
  59. Ambros V. The 2007 George W. Beadle Medal. Robert K. Herman. Genetics. 2007 Feb; 175(2):465-6.
    View in: PubMed
    Score: 0.040
  60. Pepper AS, McCane JE, Kemper K, Yeung DA, Lee RC, Ambros V, Moss EG. The C. elegans heterochronic gene lin-46 affects developmental timing at two larval stages and encodes a relative of the scaffolding protein gephyrin. Development. 2004 May; 131(9):2049-59.
    View in: PubMed
    Score: 0.033
  61. Ambros V. microRNAs: tiny regulators with great potential. Cell. 2001 Dec 28; 107(7):823-6.
    View in: PubMed
    Score: 0.028
  62. Ambros V. Development. Dicing up RNAs. Science. 2001 Aug 03; 293(5531):811-3.
    View in: PubMed
    Score: 0.028
  63. Slack FJ, Basson M, Liu Z, Ambros V, Horvitz HR, Ruvkun G. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol Cell. 2000 Apr; 5(4):659-69.
    View in: PubMed
    Score: 0.025
  64. Long D, Lee R, Williams P, Chan CY, Ambros V, Ding Y. Potent effect of target structure on microRNA function. Nat Struct Mol Biol. 2007 Apr; 14(4):287-94.
    View in: PubMed
    Score: 0.010
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.