Header Logo

Connection

Victor Ambros to Caenorhabditis elegans Proteins

This is a "connection" page, showing publications Victor Ambros has written about Caenorhabditis elegans Proteins.
  1. Duan Y, Li L, Panzade GP, Piton A, Zinovyeva A, Ambros V. Modeling neurodevelopmental disorder-associated human AGO1 mutations in Caenorhabditis elegans Argonaute alg-1. Proc Natl Acad Sci U S A. 2024 Mar 05; 121(10):e2308255121.
    View in: PubMed
    Score: 0.641
  2. Mirza Z, Walhout AJM, Ambros V. A bacterial pathogen induces developmental slowing by high reactive oxygen species and mitochondrial dysfunction in Caenorhabditis elegans. Cell Rep. 2023 10 31; 42(10):113189.
    View in: PubMed
    Score: 0.623
  3. Nelson C, Ambros V. A cohort of Caenorhabditis species lacking the highly conserved let-7 microRNA. G3 (Bethesda). 2021 04 23; 11(3).
    View in: PubMed
    Score: 0.526
  4. Ambros V. Development: Keeping Time with Transcription. Curr Biol. 2021 02 22; 31(4):R212-R214.
    View in: PubMed
    Score: 0.520
  5. Ilbay O, Ambros V. Regulation of nuclear-cytoplasmic partitioning by the lin-28-lin-46 pathway reinforces microRNA repression of HBL-1 to confer robust cell-fate progression in C. elegans. Development. 2019 11 06; 146(21).
    View in: PubMed
    Score: 0.475
  6. Choi S, Ambros V. The C. elegans heterochronic gene lin-28 coordinates the timing of hypodermal and somatic gonadal programs for hermaphrodite reproductive system morphogenesis. Development. 2019 03 07; 146(5).
    View in: PubMed
    Score: 0.454
  7. Ren Z, Veksler-Lublinsky I, Morrissey D, Ambros V. Staufen Negatively Modulates MicroRNA Activity in Caenorhabditis elegans. G3 (Bethesda). 2016 05 03; 6(5):1227-37.
    View in: PubMed
    Score: 0.373
  8. Zinovyeva AY, Veksler-Lublinsky I, Vashisht AA, Wohlschlegel JA, Ambros VR. Caenorhabditis elegans ALG-1 antimorphic mutations uncover functions for Argonaute in microRNA guide strand selection and passenger strand disposal. Proc Natl Acad Sci U S A. 2015 Sep 22; 112(38):E5271-80.
    View in: PubMed
    Score: 0.356
  9. Karp X, Ambros V. The developmental timing regulator HBL-1 modulates the dauer formation decision in Caenorhabditis elegans. Genetics. 2011 Jan; 187(1):345-53.
    View in: PubMed
    Score: 0.254
  10. Ambros V. pRB/CKI pathways at the interface of cell cycle and development. Cell Cycle. 2009 Nov 01; 8(21):3433-4.
    View in: PubMed
    Score: 0.237
  11. Hammell CM, Karp X, Ambros V. A feedback circuit involving let-7-family miRNAs and DAF-12 integrates environmental signals and developmental timing in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2009 Nov 03; 106(44):18668-73.
    View in: PubMed
    Score: 0.237
  12. Hammell CM, Lubin I, Boag PR, Blackwell TK, Ambros V. nhl-2 Modulates microRNA activity in Caenorhabditis elegans. Cell. 2009 Mar 06; 136(5):926-38.
    View in: PubMed
    Score: 0.227
  13. Hristova M, Birse D, Hong Y, Ambros V. The Caenorhabditis elegans heterochronic regulator LIN-14 is a novel transcription factor that controls the developmental timing of transcription from the insulin/insulin-like growth factor gene ins-33 by direct DNA binding. Mol Cell Biol. 2005 Dec; 25(24):11059-72.
    View in: PubMed
    Score: 0.181
  14. Karp X, Ambros V. Developmental biology. Encountering microRNAs in cell fate signaling. Science. 2005 Nov 25; 310(5752):1288-9.
    View in: PubMed
    Score: 0.181
  15. Abbott AL, Alvarez-Saavedra E, Miska EA, Lau NC, Bartel DP, Horvitz HR, Ambros V. The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. Dev Cell. 2005 Sep; 9(3):403-14.
    View in: PubMed
    Score: 0.178
  16. Lee R, Feinbaum R, Ambros V. A short history of a short RNA. Cell. 2004 Jan 23; 116(2 Suppl):S89-92, 1 p following S96.
    View in: PubMed
    Score: 0.159
  17. Ilbay O, Nelson C, Ambros V. C.?elegans LIN-28 controls temporal cell fate progression by regulating LIN-46 expression via the 5' UTR of lin-46 mRNA. Cell Rep. 2021 09 07; 36(10):109670.
    View in: PubMed
    Score: 0.135
  18. Ambros V. The temporal control of cell cycle and cell fate in Caenorhabditis elegans. Novartis Found Symp. 2001; 237:203-14; discussion 214-20.
    View in: PubMed
    Score: 0.129
  19. Vasquez-Rifo A, Ricci EP, Ambros V. Pseudomonas aeruginosa cleaves the decoding center of Caenorhabditis elegans ribosomes. PLoS Biol. 2020 12; 18(12):e3000969.
    View in: PubMed
    Score: 0.128
  20. Ambros V. Control of developmental timing in Caenorhabditis elegans. Curr Opin Genet Dev. 2000 Aug; 10(4):428-33.
    View in: PubMed
    Score: 0.125
  21. Hong Y, Lee RC, Ambros V. Structure and function analysis of LIN-14, a temporal regulator of postembryonic developmental events in Caenorhabditis elegans. Mol Cell Biol. 2000 Mar; 20(6):2285-95.
    View in: PubMed
    Score: 0.121
  22. Olsen PH, Ambros V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol. 1999 Dec 15; 216(2):671-80.
    View in: PubMed
    Score: 0.120
  23. Feinbaum R, Ambros V. The timing of lin-4 RNA accumulation controls the timing of postembryonic developmental events in Caenorhabditis elegans. Dev Biol. 1999 Jun 01; 210(1):87-95.
    View in: PubMed
    Score: 0.115
  24. Ambros V. Cell cycle-dependent sequencing of cell fate decisions in Caenorhabditis elegans vulva precursor cells. Development. 1999 May; 126(9):1947-56.
    View in: PubMed
    Score: 0.115
  25. Nelson C, Ambros V. Trans-splicing of the C. elegans let-7 primary transcript developmentally regulates let-7 microRNA biogenesis and let-7 family microRNA activity. Development. 2019 03 04; 146(5).
    View in: PubMed
    Score: 0.113
  26. Hong Y, Roy R, Ambros V. Developmental regulation of a cyclin-dependent kinase inhibitor controls postembryonic cell cycle progression in Caenorhabditis elegans. Development. 1998 Sep; 125(18):3585-97.
    View in: PubMed
    Score: 0.109
  27. Ambros V, Ruvkun G. Recent Molecular Genetic Explorations of Caenorhabditis elegans MicroRNAs. Genetics. 2018 07; 209(3):651-673.
    View in: PubMed
    Score: 0.108
  28. Moss EG, Lee RC, Ambros V. The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell. 1997 Mar 07; 88(5):637-46.
    View in: PubMed
    Score: 0.099
  29. McJunkin K, Ambros V. A microRNA family exerts maternal control on sex determination in C. elegans. Genes Dev. 2017 02 15; 31(4):422-437.
    View in: PubMed
    Score: 0.098
  30. Rougvie AE, Ambros V. The heterochronic gene lin-29 encodes a zinc finger protein that controls a terminal differentiation event in Caenorhabditis elegans. Development. 1995 Aug; 121(8):2491-500.
    View in: PubMed
    Score: 0.088
  31. Zinovyeva AY, Bouasker S, Simard MJ, Hammell CM, Ambros V. Mutations in conserved residues of the C. elegans microRNA Argonaute ALG-1 identify separable functions in ALG-1 miRISC loading and target repression. PLoS Genet. 2014 Apr; 10(4):e1004286.
    View in: PubMed
    Score: 0.081
  32. Zou Y, Chiu H, Zinovyeva A, Ambros V, Chuang CF, Chang C. Developmental decline in neuronal regeneration by the progressive change of two intrinsic timers. Science. 2013 Apr 19; 340(6130):372-376.
    View in: PubMed
    Score: 0.075
  33. Boss? GD, R?egger S, Ow MC, Vasquez-Rifo A, Rondeau EL, Ambros VR, Grosshans H, Simard MJ. The decapping scavenger enzyme DCS-1 controls microRNA levels in Caenorhabditis elegans. Mol Cell. 2013 Apr 25; 50(2):281-7.
    View in: PubMed
    Score: 0.075
  34. Karp X, Ambros V. Dauer larva quiescence alters the circuitry of microRNA pathways regulating cell fate progression in C. elegans. Development. 2012 Jun; 139(12):2177-86.
    View in: PubMed
    Score: 0.071
  35. Ambros V. The evolution of our thinking about microRNAs. Nat Med. 2008 Oct; 14(10):1036-40.
    View in: PubMed
    Score: 0.055
  36. Pepper AS, McCane JE, Kemper K, Yeung DA, Lee RC, Ambros V, Moss EG. The C. elegans heterochronic gene lin-46 affects developmental timing at two larval stages and encodes a relative of the scaffolding protein gephyrin. Development. 2004 May; 131(9):2049-59.
    View in: PubMed
    Score: 0.040
  37. Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol. 2004; 5(3):R13.
    View in: PubMed
    Score: 0.040
  38. Ambros V, Lee RC, Lavanway A, Williams PT, Jewell D. MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr Biol. 2003 May 13; 13(10):807-18.
    View in: PubMed
    Score: 0.038
  39. Slack FJ, Basson M, Liu Z, Ambros V, Horvitz HR, Ruvkun G. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol Cell. 2000 Apr; 5(4):659-69.
    View in: PubMed
    Score: 0.031
  40. Zhang L, Hammell M, Kudlow BA, Ambros V, Han M. Systematic analysis of dynamic miRNA-target interactions during C. elegans development. Development. 2009 Sep; 136(18):3043-55.
    View in: PubMed
    Score: 0.015
  41. Long D, Lee R, Williams P, Chan CY, Ambros V, Ding Y. Potent effect of target structure on microRNA function. Nat Struct Mol Biol. 2007 Apr; 14(4):287-94.
    View in: PubMed
    Score: 0.012
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.