Hava Siegelmann to Algorithms
This is a "connection" page, showing publications Hava Siegelmann has written about Algorithms.
Connection Strength
1.495
-
Nowicki D, Verga P, Siegelmann H. Modeling reconsolidation in kernel associative memory. PLoS One. 2013; 8(8):e68189.
Score: 0.294
-
Siegelmann HT. Turing on Super-Turing and adaptivity. Prog Biophys Mol Biol. 2013 Sep; 113(1):117-26.
Score: 0.287
-
Patel D, Sejnowski T, Siegelmann H. Optimizing Attention and Cognitive Control Costs Using Temporally Layered Architectures. Neural Comput. 2024 Nov 19; 36(12):2734-2763.
Score: 0.161
-
Patel D, Siegelmann HT. Navigating the unknown: Leveraging self-information and diversity in partially observable environments. Biochem Biophys Res Commun. 2024 12 31; 741:150923.
Score: 0.161
-
Ben-Hur A, Siegelmann HT. Computation in gene networks. Chaos. 2004 Mar; 14(1):145-51.
Score: 0.153
-
Gavald? R, Siegelmann HT. Discontinuities in recurrent neural networks. Neural Comput. 1999 Apr 01; 11(3):715-46.
Score: 0.109
-
Taylor P, Hobbs JN, Burroni J, Siegelmann HT. The global landscape of cognition: hierarchical aggregation as an organizational principle of human cortical networks and functions. Sci Rep. 2015 Dec 16; 5:18112.
Score: 0.087
-
Tal A, Peled N, Siegelmann HT. Biologically inspired load balancing mechanism in neocortical competitive learning. Front Neural Circuits. 2014; 8:18.
Score: 0.077
-
Nowicki D, Siegelmann H. Flexible kernel memory. PLoS One. 2010 Jun 11; 5(6):e10955.
Score: 0.059
-
Sivan S, Filo O, Siegelmann H. Application of expert networks for predicting proteins secondary structure. Biomol Eng. 2007 Jun; 24(2):237-43.
Score: 0.046
-
Hayes TL, Krishnan GP, Bazhenov M, Siegelmann HT, Sejnowski TJ, Kanan C. Replay in Deep Learning: Current Approaches and Missing Biological Elements. Neural Comput. 2021 10 12; 33(11):2908-2950.
Score: 0.032
-
Lipson H, Siegelmann HT. Clustering irregular shapes using high-order neurons. Neural Comput. 2000 Oct; 12(10):2331-53.
Score: 0.030