Header Logo

William E Theurkauf PhD

InstitutionUMass Chan Medical School
DepartmentProgram in Molecular Medicine
AddressUMass Chan Medical School
373 Plantation Street Two Biotech Suite 210
Worcester MA 01605
vCardDownload vCard
    Other Positions
    InstitutionT.H. Chan School of Medicine
    DepartmentProgram in Molecular Medicine

    InstitutionT.H. Chan School of Medicine
    DepartmentRNA Therapeutics Institute

    InstitutionT.H. Chan School of Medicine
    DepartmentSystems Biology

    InstitutionMorningside Graduate School of Biomedical Sciences
    DepartmentInterdisciplinary Graduate Program

    InstitutionMorningside Graduate School of Biomedical Sciences
    DepartmentMD/PhD Program

    InstitutionMorningside Graduate School of Biomedical Sciences
    DepartmentPostbaccalaureate Research Education Program

    InstitutionUMass Chan Programs, Centers and Institutes
    DepartmentBiochemistry and Molecular Pharmacology

    InstitutionUMass Chan Programs, Centers and Institutes
    DepartmentBioinformatics and Integrative Biology

    Collapse Biography 
    Collapse education and training
    Brandeis University, Waltham, MA, United StatesBABiochemistry
    Brandeis University, Waltham, MA, United StatesPHDBiochemistry

    Collapse Overview 
    Collapse overview

    Academic Background

    Bill Theurkauf received his BA from Brandeis University in 1980, and his PhD in Biochemistry from Brandeis in 1988. From 1988 to 1993 he was a postdoctoral fellow in the Department of Biochemistry and Biophysics at UCSF, where he was supported by fellowships from the Damon Runyon-Walter Winchell Cancer Research Fund and NIH. From 1993 to 1998, he was a member of the faculty of the Department of Biochemistry and Cell Biology at the State University of New York at Stony Brook. In September 1998, Dr. Theurkauf joined the Program in Molecular Medicine at University of Massachusetts Medical Center as an associate professor. He is currently a professor in the Program in Molecular Medicine and Director of the Program in Cell and Developmental Dynamics


    The germline transmits the genetic instructions that perpetuate species, which presents unique pressures on genome maintenance systems. We’re interested in the mechanisms that maintain the integrity of the “immortal” genome during germline development, and in the developmental consequences of defects in these mechanisms.


    Transposons and transposon fragments represent approximately half the human genome. Mobilization of these elements can lead to genetic instability and disease, but may also drive evolution and generate diversity during neurogenesis. In bilateral animals, Piwi-interacting RNAs (piRNAs) silence transposons during germline development and have a critical role in maintaining the integrity of the inherited genome. Primary piRNAs bind to PIWI clade Argonaute proteins and mediate transposon silencing. These small silencing RNAs are generated from long precursors encoded by heterochromatic clusters. Most of the piRNA processing machinery, by contrast, localizes to the perinuclear nuage. We would like to understand 1) the genetic and epigenetic mechanisms that specify clusters; 2) How transcripts from the heterochromatic piRNA clusters are directed to the biogenesis machinery/nuage, and 3) how piRNAs suppress transposition.

    Related publications:

    Klattenhoff, C. Bratu, D, P., McGinnis-Schultz, N., Koppetsch, B. S. , Cook, H. A., and Theurkauf, W. E. (2007). Drosophila rasiRNA pathway mutations disrupt embryonic axis specification through activation of an ATR/Chk2 DNA damage response. Developmental Cell 12, 45-56.

    Li, C., Vagin, V. V., Lee, S., Xu, J., Ma, , Xi, H, Seitz, H., Horwich, M. D., Syrzycka, M., Honda, B. M., Kittler, E. L. W., Zapp, M. L., Klattenhoff, C., Schulz, N., Theurkauf, W. E., Weng, Z. and P. D. Zamore (2009). In the absence of Argonaute3, Aubergine-bound piRNAs collapse, but Piwi-bound piRNAs persist. Cell 137, 509-521.

    Klattenhoff, C., Xi, H, Li, C, Lee, S., Xu, J., Khurana, J.S., Schultz, N., Koppetsch, B. S., Nowosielska, A., Seitz, H., Zamore, P.D., Weng. Z. and William E. Theurkauf (2009). The Drosophila HP1 homologue Rhino is required for transposon silencing and piRNA production by dual strand clusters. Cell 138, 1137-1149. PMID: 19732946.

    Khurana, J. S., Xu. J., Weng, Z. and W. E. Theurkauf (2010). Distinct functions for the Drosophila piRNA pathway in genome maintenance and telomere protection. PLoS Genetics 6, e1001246.


    The piRNA pathway represents an adaptive immune system that controls the activity of mobile genetic elements. This rapidly evolving genome pathogens can arise from infectious viruses and spread through both interbreeding and poorly understood horizontal transfer mechanisms. We have recently found that introduction of P element transposons activates a broad spectrum of resident transposon families, and that silencing of the invading P element and resident elements is linked to generation of new transposon insertions in piRNA clusters that are transmitted through the germline with high fidelity. These findings indicate that adaptation to transposon invasion triggers significant structural changes in genome architecture that appear to genetically enhance silencing capacity. Ongoing studies are directed at understanding how invasion of a single transposon activates resident elements, and the role of this process in chromosome evolution.

    Related publication:

    Khurana, J. S., Wang, J., Xu, J., Koppetsch, B., Thomson, T., Nowosielska, A., Li., C., Zamore, P. D., Weng, Z., and W. E. Theurkauf (2011). Adaptation to P element transposon invasion in Drosophila melanogaster. Cell 147, 1551-1563.


    DNA damage checkpoint pathways have well-established roles in control of cell division and maintenance of genome integrity. Recent studies from a number of laboratories indicate that complex developmental processes are also regulated in response to DNA damage. In Drosophila, the axes of the embryo are specified through asymmetric localization of morphogenetic RNAs in the developing oocyte. During early embryogenesis, the maternally supplied RNAs that drive initial development are degraded and the genome of the zygotic is transcriptionally activated at the maternal-zygotic transition (MZT), which represents a switch in genetic control of development from the mother to the zygote. Axis specification and the MZT are controlled by DNA damage signaling through Chk2 kinase, which functions as a tumor suppressor in humans. We would like to understand how Chk2 governs these key developmental processes.

    Related publications:

    Klattenhoff, C. Bratu, D, P., McGinnis-Schultz, N., Koppetsch, B. S. , Cook, H. A., and Theurkauf, W. E. (2007). Drosophila rasiRNA pathway mutations disrupt embryonic axis specification through activation of an ATR/Chk2 DNA damage response. Developmental Cell 12, 45-56.

    Benoit, B., He, C. H., Zhang, F., Votruba, S. M., Tadros, W., Weswood, J. T., Smibert, C. A., Lipshitz, H. D., and W. E. Theurkauf (2009). An essential role for the RNA-binding protein SMAUG at the Drosophila maternal-to-zygotic transition. Development 136, 923-932.

    Collapse Rotation Projects

    Rotation Projects

    Proper control of cell division and accurate chromosome segregation are fundamental to cell function and normal development. Chromosome segregation errors lead to birth defects, and abnormal cell division control is associated with essentially all cancers. A major aim of research in the laboratory is to understand cell cycle control and chromosome segregation mechanisms. We use a combination of classical and molecular genetics, high-resolution in vivo imaging, and biochemical techniques to define pathways that control the cell cycle and chromosome segregation in response to environmental insult (DNA damaging agents) and developmental queues. Rotation projects focus on the role of cell cycle checkpoint and tumor suppressor pathways during the earliest stages of embryogenesis, and cell cycle control of actin and microtubule reorganization during mitosis. Through these projects, students gain exposure of the art in vivo imaging and genetic and molecular manipulations of gene function to define pathways controlling cell division and chromosome segregation.

    Embryonic Patterning

    Essentially all cells are asymmetric, with structurally distinct surfaces and polarized internal organization. This asymmetry is essential to the specialized functions cells serve within complex multi-cellular organisms . A second area of interest focuses on the mechanisms that establish cellular asymmetry. In Drosophila, the embryonic axes are specified during oogenesis through the asymmetric localization of key morphogenetic molecules within the developing oocyte. We use axis specification in the fly as a model for the processes that establish cellular asymmetry. An intact microtubule network is essential to axis specification in the fly oocyte and to polarization of somatic. We hope to define the molecular functions for microtubules in establishing cellular asymmetry. We are currently using in vivo imaging techniques to directly characterize the microtubule dependent mRNA transport processes that differentiate the anterior and posterior poles of the developing oocyte. In addition, classical genetic and biochemical techniques are used to identify the microtubule motors and associated proteins that mediate mRNA movements to the oocyte poles.

    Collapse Post Docs

    A postdoctoral position is available to study in this laboratory. Contact Dr. Theurkauf for additional details.

    Collapse Bibliographic 
    Collapse selected publications
    Publications listed below are automatically derived from MEDLINE/PubMed and other sources, which might result in incorrect or missing publications. Faculty can login to make corrections and additions.
    Newest   |   Oldest   |   Most Cited   |   Most Discussed   |   Timeline   |   Field Summary   |   Plain Text
    PMC Citations indicate the number of times the publication was cited by articles in PubMed Central, and the Altmetric score represents citations in news articles and social media. (Note that publications are often cited in additional ways that are not shown here.) Fields are based on how the National Library of Medicine (NLM) classifies the publication's journal and might not represent the specific topic of the publication. Translation tags are based on the publication type and the MeSH terms NLM assigns to the publication. Some publications (especially newer ones and publications not in PubMed) might not yet be assigned Field or Translation tags.) Click a Field or Translation tag to filter the publications.
    1. Ho S, Rice NP, Yu T, Weng Z, Theurkauf WE. Aub, Vasa and Armi localization to phase separated nuage is dispensable for piRNA biogenesis and transposon silencing in Drosophila. bioRxiv. 2023 Jul 26. PMID: 37546958.
    2. Cao J, Yu T, Xu B, Hu Z, Zhang XO, Theurkauf WE, Weng Z. Epigenetic and chromosomal features drive transposon insertion in Drosophila melanogaster. Nucleic Acids Res. 2023 03 21; 51(5):2066-2086. PMID: 36762470.
      Citations: 3     Fields:    Translation:AnimalsCells
    3. Tsuji J, Thomson T, Brown C, Ghosh S, Theurkauf WE, Weng Z, Schwartz LM. Somatic piRNAs and Transposons are Differentially Expressed Coincident with Skeletal Muscle Atrophy and Programmed Cell Death. Front Genet. 2021; 12:775369. PMID: 35003216.
    4. Zhang G, Yu T, Parhad SS, Ho S, Weng Z, Theurkauf WE. piRNA-independent transposon silencing by the Drosophila THO complex. Dev Cell. 2021 09 27; 56(18):2623-2635.e5. PMID: 34547226.
      Citations: 4     Fields:    Translation:AnimalsCells
    5. Yu T, Huang X, Dou S, Tang X, Luo S, Theurkauf WE, Lu J, Weng Z. A benchmark and an algorithm for detecting germline transposon insertions and measuring de novo transposon insertion frequencies. Nucleic Acids Res. 2021 05 07; 49(8):e44. PMID: 33511407.
      Citations: 14     Fields:    Translation:HumansAnimalsCells
    6. Yu T, Fan K, ?zata DM, Zhang G, Fu Y, Theurkauf WE, Zamore PD, Weng Z. Long first exons and epigenetic marks distinguish conserved pachytene piRNA clusters from other mammalian genes. Nat Commun. 2021 01 04; 12(1):73. PMID: 33397987.
      Citations: 12     Fields:    Translation:AnimalsCells
    7. Tsuji J, Thomson T, Chan E, Brown CK, Oppenheimer J, Bigelow C, Dong X, Theurkauf WE, Weng Z, Schwartz LM. High-resolution analysis of differential gene expression during skeletal muscle atrophy and programmed cell death. Physiol Genomics. 2020 10 01; 52(10):492-511. PMID: 32926651.
      Citations: 4     Fields:    Translation:AnimalsCells
    8. Parhad SS, Yu T, Zhang G, Rice NP, Weng Z, Theurkauf WE. Adaptive Evolution Targets a piRNA Precursor Transcription Network. Cell Rep. 2020 02 25; 30(8):2672-2685.e5. PMID: 32101744.
      Citations: 9     Fields:    Translation:AnimalsCells
    9. Yu T, Koppetsch BS, Pagliarani S, Johnston S, Silverstein NJ, Luban J, Chappell K, Weng Z, Theurkauf WE. The piRNA Response to Retroviral Invasion of the Koala Genome. Cell. 2019 10 17; 179(3):632-643.e12. PMID: 31607510.
      Citations: 35     Fields:    Translation:AnimalsCells
    10. Parhad SS, Theurkauf WE. Rapid evolution and conserved function of the piRNA pathway. Open Biol. 2019 01 31; 9(1):180181. PMID: 30958115.
      Citations: 42     Fields:    Translation:HumansAnimalsCells
    11. Zhang G, Tu S, Yu T, Zhang XO, Parhad SS, Weng Z, Theurkauf WE. Co-dependent Assembly of Drosophila piRNA Precursor Complexes and piRNA Cluster Heterochromatin. Cell Rep. 2018 09 25; 24(13):3413-3422.e4. PMID: 30257203.
      Citations: 11     Fields:    Translation:AnimalsCells
    12. Yu B, Lin YA, Parhad SS, Jin Z, Ma J, Theurkauf WE, Zhang ZZ, Huang Y. Structural insights into Rhino-Deadlock complex for germline piRNA cluster specification. EMBO Rep. 2018 07; 19(7). PMID: 29858487.
      Citations: 9     Fields:    Translation:Animals
    13. Bozler J, Kacsoh BZ, Chen H, Theurkauf WE, Weng Z, Bosco G. A systems level approach to temporal expression dynamics in Drosophila reveals clusters of long term memory genes. PLoS Genet. 2017 Oct; 13(10):e1007054. PMID: 29084214.
      Citations: 14     Fields:    Translation:Animals
    14. Parhad SS, Tu S, Weng Z, Theurkauf WE. Adaptive Evolution Leads to Cross-Species Incompatibility in the piRNA Transposon Silencing Machinery. Dev Cell. 2017 10 09; 43(1):60-70.e5. PMID: 28919205.
      Citations: 32     Fields:    Translation:AnimalsCells
    15. Zhang Z, Wang J, Schultz N, Zhang F, Parhad SS, Tu S, Vreven T, Zamore PD, Weng Z, Theurkauf WE. The HP1 homolog rhino anchors a nuclear complex that suppresses piRNA precursor splicing. Cell. 2014 Jun 05; 157(6):1353-1363. PMID: 24906152.
      Citations: 118     Fields:    Translation:AnimalsCells
    16. Zhuang J, Wang J, Theurkauf W, Weng Z. TEMP: a computational method for analyzing transposable element polymorphism in populations. Nucleic Acids Res. 2014 Jun; 42(11):6826-38. PMID: 24753423.
      Citations: 77     Fields:    Translation:HumansAnimalsCells
    17. Zhang Z, Koppetsch BS, Wang J, Tipping C, Weng Z, Theurkauf WE, Zamore PD. Antisense piRNA amplification, but not piRNA production or nuage assembly, requires the Tudor-domain protein Qin. EMBO J. 2014 Mar 18; 33(6):536-9. PMID: 24652836.
      Citations: 13     Fields:    Translation:AnimalsCells
    18. Perrat PN, DasGupta S, Wang J, Theurkauf W, Weng Z, Rosbash M, Waddell S. Transposition-driven genomic heterogeneity in the Drosophila brain. Science. 2013 Apr 05; 340(6128):91-5. PMID: 23559253.
      Citations: 124     Fields:    Translation:AnimalsCells
    19. Simkin A, Wong A, Poh YP, Theurkauf WE, Jensen JD. Recurrent and recent selective sweeps in the piRNA pathway. Evolution. 2013 Apr; 67(4):1081-90. PMID: 23550757.
      Citations: 39     Fields:    Translation:AnimalsCells
    20. Zhang Z, Theurkauf WE, Weng Z, Zamore PD. Strand-specific libraries for high throughput RNA sequencing (RNA-Seq) prepared without poly(A) selection. Silence. 2012 Dec 28; 3(1):9. PMID: 23273270.
    21. Zhang F, Wang J, Xu J, Zhang Z, Koppetsch BS, Schultz N, Vreven T, Meignin C, Davis I, Zamore PD, Weng Z, Theurkauf WE. UAP56 couples piRNA clusters to the perinuclear transposon silencing machinery. Cell. 2012 Nov 09; 151(4):871-884. PMID: 23141543.
      Citations: 121     Fields:    Translation:AnimalsCells
    22. Khurana JS, Wang J, Xu J, Koppetsch BS, Thomson TC, Nowosielska A, Li C, Zamore PD, Weng Z, Theurkauf WE. Adaptation to P element transposon invasion in Drosophila melanogaster. Cell. 2011 Dec 23; 147(7):1551-63. PMID: 22196730.
      Citations: 123     Fields:    Translation:AnimalsCells
    23. Zhang Z, Xu J, Koppetsch BS, Wang J, Tipping C, Ma S, Weng Z, Theurkauf WE, Zamore PD. Heterotypic piRNA Ping-Pong requires qin, a protein with both E3 ligase and Tudor domains. Mol Cell. 2011 Nov 18; 44(4):572-84. PMID: 22099305.
      Citations: 111     Fields:    Translation:AnimalsCells
    24. Khurana JS, Xu J, Weng Z, Theurkauf WE. Distinct functions for the Drosophila piRNA pathway in genome maintenance and telomere protection. PLoS Genet. 2010 Dec 16; 6(12):e1001246. PMID: 21179579.
      Citations: 49     Fields:    Translation:AnimalsCells
    25. Khurana JS, Theurkauf W. piRNAs, transposon silencing, and Drosophila germline development. J Cell Biol. 2010 Nov 29; 191(5):905-13. PMID: 21115802.
      Citations: 79     Fields:    Translation:AnimalsCells
    26. Theurkauf W. William Theurkauf. Curr Biol. 2010 May 11; 20(9):R389-90. PMID: 20468083.
      Citations:    Fields:    
    27. Varmark H, Kwak S, Theurkauf WE. A role for Chk2 in DNA damage induced mitotic delays in human colorectal cancer cells. Cell Cycle. 2010 Jan 15; 9(2):312-20. PMID: 20023427.
      Citations: 7     Fields:    Translation:HumansAnimalsCells
    28. Varmark H, Sparks CA, Nordberg JJ, Koppetsch BS, Theurkauf WE. DNA damage-induced cell death is enhanced by progression through mitosis. Cell Cycle. 2009 Sep 15; 8(18):2951-63. PMID: 19713770.
      Citations: 12     Fields:    Translation:HumansCells
    29. Klattenhoff C, Xi H, Li C, Lee S, Xu J, Khurana JS, Zhang F, Schultz N, Koppetsch BS, Nowosielska A, Seitz H, Zamore PD, Weng Z, Theurkauf WE. The Drosophila HP1 homolog Rhino is required for transposon silencing and piRNA production by dual-strand clusters. Cell. 2009 Sep 18; 138(6):1137-49. PMID: 19732946.
      Citations: 236     Fields:    Translation:AnimalsCells
    30. Li C, Vagin VV, Lee S, Xu J, Ma S, Xi H, Seitz H, Horwich MD, Syrzycka M, Honda BM, Kittler EL, Zapp ML, Klattenhoff C, Schulz N, Theurkauf WE, Weng Z, Zamore PD. Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies. Cell. 2009 May 01; 137(3):509-21. PMID: 19395009.
      Citations: 311     Fields:    Translation:AnimalsCells
    31. Benoit B, He CH, Zhang F, Votruba SM, Tadros W, Westwood JT, Smibert CA, Lipshitz HD, Theurkauf WE. An essential role for the RNA-binding protein Smaug during the Drosophila maternal-to-zygotic transition. Development. 2009 Mar; 136(6):923-32. PMID: 19234062.
      Citations: 75     Fields:    Translation:HumansAnimalsCells
    32. Blumenstiel JP, Fu R, Theurkauf WE, Hawley RS. Components of the RNAi machinery that mediate long-distance chromosomal associations are dispensable for meiotic and early somatic homolog pairing in Drosophila melanogaster. Genetics. 2008 Nov; 180(3):1355-65. PMID: 18791234.
      Citations: 9     Fields:    Translation:AnimalsCells
    33. Klattenhoff C, Theurkauf W. Biogenesis and germline functions of piRNAs. Development. 2008 Jan; 135(1):3-9. PMID: 18032451.
      Citations: 250     Fields:    Translation:AnimalsCells
    34. Takada S, Kwak S, Koppetsch BS, Theurkauf WE. grp (chk1) replication-checkpoint mutations and DNA damage trigger a Chk2-dependent block at the Drosophila midblastula transition. Development. 2007 May; 134(9):1737-44. PMID: 17409117.
      Citations: 24     Fields:    Translation:AnimalsCells
    35. Klattenhoff C, Bratu DP, McGinnis-Schultz N, Koppetsch BS, Cook HA, Theurkauf WE. Drosophila rasiRNA pathway mutations disrupt embryonic axis specification through activation of an ATR/Chk2 DNA damage response. Dev Cell. 2007 Jan; 12(1):45-55. PMID: 17199040.
      Citations: 165     Fields:    Translation:AnimalsCells
    36. Theurkauf WE, Klattenhoff C, Bratu DP, McGinnis-Schultz N, Koppetsch BS, Cook HA. rasiRNAs, DNA damage, and embryonic axis specification. Cold Spring Harb Symp Quant Biol. 2006; 71:171-80. PMID: 17381294.
      Citations: 18     Fields:    Translation:AnimalsCells
    37. Serbus LR, Cha BJ, Theurkauf WE, Saxton WM. Dynein and the actin cytoskeleton control kinesin-driven cytoplasmic streaming in Drosophila oocytes. Development. 2005 Aug; 132(16):3743-52. PMID: 16077093.
      Citations: 67     Fields:    Translation:AnimalsCells
    38. F?rstemann K, Tomari Y, Du T, Vagin VV, Denli AM, Bratu DP, Klattenhoff C, Theurkauf WE, Zamore PD. Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol. 2005 Jul; 3(7):e236. PMID: 15918770.
      Citations: 243     Fields:    Translation:AnimalsCells
    39. Doxsey S, McCollum D, Theurkauf W. Centrosomes in cellular regulation. Annu Rev Cell Dev Biol. 2005; 21:411-34. PMID: 16212501.
      Citations: 139     Fields:    Translation:AnimalsCells
    40. Cook HA, Koppetsch BS, Wu J, Theurkauf WE. The Drosophila SDE3 homolog armitage is required for oskar mRNA silencing and embryonic axis specification. Cell. 2004 Mar 19; 116(6):817-29. PMID: 15035984.
      Citations: 108     Fields:    Translation:AnimalsCells
    41. Tomari Y, Du T, Haley B, Schwarz DS, Bennett R, Cook HA, Koppetsch BS, Theurkauf WE, Zamore PD. RISC assembly defects in the Drosophila RNAi mutant armitage. Cell. 2004 Mar 19; 116(6):831-41. PMID: 15035985.
      Citations: 161     Fields:    Translation:AnimalsCells
    42. Takada S, Kelkar A, Theurkauf WE. Drosophila checkpoint kinase 2 couples centrosome function and spindle assembly to genomic integrity. Cell. 2003 Apr 04; 113(1):87-99. PMID: 12679037.
      Citations: 79     Fields:    Translation:AnimalsCells
    43. Arn EA, Cha BJ, Theurkauf WE, Macdonald PM. Recognition of a bicoid mRNA localization signal by a protein complex containing Swallow, Nod, and RNA binding proteins. Dev Cell. 2003 Jan; 4(1):41-51. PMID: 12530962.
      Citations: 29     Fields:    Translation:AnimalsCells
    44. Cha BJ, Serbus LR, Koppetsch BS, Theurkauf WE. Kinesin I-dependent cortical exclusion restricts pole plasm to the oocyte posterior. Nat Cell Biol. 2002 Aug; 4(8):592-8. PMID: 12134163.
      Citations: 72     Fields:    Translation:AnimalsCells
    45. Stevenson V, Hudson A, Cooley L, Theurkauf WE. Arp2/3-dependent pseudocleavage [correction of psuedocleavage] furrow assembly in syncytial Drosophila embryos. Curr Biol. 2002 Apr 30; 12(9):705-11. PMID: 12007413.
      Citations: 39     Fields:    Translation:Animals
    46. Cha BJ, Koppetsch BS, Theurkauf WE. In vivo analysis of Drosophila bicoid mRNA localization reveals a novel microtubule-dependent axis specification pathway. Cell. 2001 Jul 13; 106(1):35-46. PMID: 11461700.
      Citations: 70     Fields:    Translation:AnimalsCells
    47. Richter JD, Theurkauf WE. Development. The message is in the translation. Science. 2001 Jul 06; 293(5527):60-2. PMID: 11441171.
      Citations: 11     Fields:    Translation:AnimalsCells
    48. Theurkauf WE. TACCing down the spindle poles. Nat Cell Biol. 2001 Jul; 3(7):E159-61. PMID: 11433309.
      Citations: 2     Fields:    Translation:AnimalsCells
    49. Stevenson VA, Kramer J, Kuhn J, Theurkauf WE. Centrosomes and the Scrambled protein coordinate microtubule-independent actin reorganization. Nat Cell Biol. 2001 Jan; 3(1):68-75. PMID: 11146628.
      Citations: 28     Fields:    Translation:AnimalsCells
    50. Guilherme A, Emoto M, Buxton JM, Bose S, Sabini R, Theurkauf WE, Leszyk J, Czech MP. Perinuclear localization and insulin responsiveness of GLUT4 requires cytoskeletal integrity in 3T3-L1 adipocytes. J Biol Chem. 2000 Dec 08; 275(49):38151-9. PMID: 10950952.
      Citations: 27     Fields:    Translation:AnimalsCells
    51. Groisman I, Huang YS, Mendez R, Cao Q, Theurkauf W, Richter JD. CPEB, maskin, and cyclin B1 mRNA at the mitotic apparatus: implications for local translational control of cell division. Cell. 2000 Oct 27; 103(3):435-47. PMID: 11081630.
      Citations: 118     Fields:    Translation:AnimalsCells
    52. Stevenson VA, Theurkauf WE. Actin cytoskeleton: putting a CAP on actin polymerization. Curr Biol. 2000 Oct 05; 10(19):R695-7. PMID: 11050402.
      Citations: 6     Fields:    Translation:Cells
    53. Sibon OC, Kelkar A, Lemstra W, Theurkauf WE. DNA-replication/DNA-damage-dependent centrosome inactivation in Drosophila embryos. Nat Cell Biol. 2000 Feb; 2(2):90-5. PMID: 10655588.
      Citations: 54     Fields:    Translation:AnimalsCells
    54. Sibon OC, Lauren?on A, Hawley R, Theurkauf WE. The Drosophila ATM homologue Mei-41 has an essential checkpoint function at the midblastula transition. Curr Biol. 1999 Mar 25; 9(6):302-12. PMID: 10209095.
      Citations: 83     Fields:    Translation:HumansAnimalsCells
    55. Theurkauf WE, Heck MM. Identification and characterization of mitotic mutations in Drosophila. Methods Cell Biol. 1999; 61:317-46. PMID: 9891322.
      Citations: 4     Fields:    Translation:AnimalsCells
    56. Theurkauf WE, Hazelrigg TI. In vivo analyses of cytoplasmic transport and cytoskeletal organization during Drosophila oogenesis: characterization of a multi-step anterior localization pathway. Development. 1998 Sep; 125(18):3655-66. PMID: 9716531.
      Citations: 48     Fields:    Translation:AnimalsCells
    57. Theurkauf WE. Oocyte differentiation: a motor makes a difference. Curr Biol. 1997 Sep 01; 7(9):R548-51. PMID: 9285699.
      Citations: 3     Fields:    Translation:Animals
    58. Sibon OC, Stevenson VA, Theurkauf WE. DNA-replication checkpoint control at the Drosophila midblastula transition. Nature. 1997 Jul 03; 388(6637):93-7. PMID: 9214509.
      Citations: 127     Fields:    Translation:AnimalsCells
    59. Matthies HJ, McDonald HB, Goldstein LS, Theurkauf WE. Anastral meiotic spindle morphogenesis: role of the non-claret disjunctional kinesin-like protein. J Cell Biol. 1996 Jul; 134(2):455-64. PMID: 8707829.
      Citations: 93     Fields:    Translation:AnimalsCells
    60. Lieberfarb ME, Chu T, Wreden C, Theurkauf W, Gergen JP, Strickland S. Mutations that perturb poly(A)-dependent maternal mRNA activation block the initiation of development. Development. 1996 Feb; 122(2):579-88. PMID: 8625809.
      Citations: 25     Fields:    Translation:AnimalsCells
    61. Sullivan W, Theurkauf WE. The cytoskeleton and morphogenesis of the early Drosophila embryo. Curr Opin Cell Biol. 1995 Feb; 7(1):18-22. PMID: 7755985.
      Citations: 54     Fields:    Translation:AnimalsCells
    62. Cooley L, Theurkauf WE. Cytoskeletal functions during Drosophila oogenesis. Science. 1994 Oct 28; 266(5185):590-6. PMID: 7939713.
      Citations: 53     Fields:    Translation:AnimalsCells
    63. Theurkauf WE. Microtubules and cytoplasm organization during Drosophila oogenesis. Dev Biol. 1994 Oct; 165(2):352-60. PMID: 7958405.
      Citations: 24     Fields:    Translation:AnimalsCells
    64. Theurkauf WE. Premature microtubule-dependent cytoplasmic streaming in cappuccino and spire mutant oocytes. Science. 1994 Sep 30; 265(5181):2093-6. PMID: 8091233.
      Citations: 51     Fields:    Translation:AnimalsCells
    65. Theurkauf WE. Actin cytoskeleton. Through the bottleneck. Curr Biol. 1994 Jan 01; 4(1):76-8. PMID: 7922320.
      Citations: 5     Fields:    Translation:AnimalsCells
    66. Theurkauf WE. Immunofluorescence analysis of the cytoskeleton during oogenesis and early embryogenesis. Methods Cell Biol. 1994; 44:489-505. PMID: 7707968.
      Citations: 30     Fields:    Translation:AnimalsCells
    67. Hawley RS, Theurkauf WE. Requiem for distributive segregation: achiasmate segregation in Drosophila females. Trends Genet. 1993 Sep; 9(9):310-7. PMID: 8236460.
      Citations: 68     Fields:    Translation:AnimalsCells
    68. Theurkauf WE, Alberts BM, Jan YN, Jongens TA. A central role for microtubules in the differentiation of Drosophila oocytes. Development. 1993 Aug; 118(4):1169-80. PMID: 8269846.
      Citations: 84     Fields:    Translation:AnimalsCells
    69. Sullivan W, Fogarty P, Theurkauf W. Mutations affecting the cytoskeletal organization of syncytial Drosophila embryos. Development. 1993 Aug; 118(4):1245-54. PMID: 8269851.
      Citations: 49     Fields:    Translation:AnimalsCells
    70. Baker J, Theurkauf WE, Schubiger G. Dynamic changes in microtubule configuration correlate with nuclear migration in the preblastoderm Drosophila embryo. J Cell Biol. 1993 Jul; 122(1):113-21. PMID: 8314839.
      Citations: 45     Fields:    Translation:AnimalsCells
    71. McKim KS, Jang JK, Theurkauf WE, Hawley RS. Mechanical basis of meiotic metaphase arrest. Nature. 1993 Mar 25; 362(6418):364-6. PMID: 8455723.
      Citations: 29     Fields:    Translation:AnimalsCells
    72. Theurkauf WE. Behavior of structurally divergent alpha-tubulin isotypes during Drosophila embryogenesis: evidence for post-translational regulation of isotype abundance. Dev Biol. 1992 Nov; 154(1):205-17. PMID: 1426627.
      Citations: 17     Fields:    Translation:AnimalsCells
    73. Theurkauf WE, Smiley S, Wong ML, Alberts BM. Reorganization of the cytoskeleton during Drosophila oogenesis: implications for axis specification and intercellular transport. Development. 1992 Aug; 115(4):923-36. PMID: 1451668.
      Citations: 127     Fields:    Translation:AnimalsCells
    74. Theurkauf WE, Hawley RS. Meiotic spindle assembly in Drosophila females: behavior of nonexchange chromosomes and the effects of mutations in the nod kinesin-like protein. J Cell Biol. 1992 Mar; 116(5):1167-80. PMID: 1740471.
      Citations: 155     Fields:    Translation:AnimalsCells
    75. Kellogg DR, Sullivan W, Theurkauf W, Oegema K, Raff JW, Alberts BM. Studies on the centrosome and cytoplasmic organization in the early Drosophila embryo. Cold Spring Harb Symp Quant Biol. 1991; 56:649-62. PMID: 1840267.
      Citations: 1     Fields:    Translation:AnimalsCells
    76. Theurkauf WE, Baum H, Bo J, Wensink PC. Tissue-specific and constitutive alpha-tubulin genes of Drosophila melanogaster code for structurally distinct proteins. Proc Natl Acad Sci U S A. 1986 Nov; 83(22):8477-81. PMID: 3095837.
      Citations: 47     Fields:    Translation:AnimalsCells
    77. Vallee RB, Bloom GS, Theurkauf WE. Microtubule-associated proteins: subunits of the cytomatrix. J Cell Biol. 1984 Jul; 99(1 Pt 2):38s-44s. PMID: 6086669.
      Citations: 13     Fields:    Translation:AnimalsCells
    78. De Camilli P, Miller PE, Navone F, Theurkauf WE, Vallee RB. Distribution of microtubule-associated protein 2 in the nervous system of the rat studied by immunofluorescence. Neuroscience. 1984 Apr; 11(4):817-46. PMID: 6377119.
      Citations: 73     Fields:    Translation:Animals
    79. Theurkauf WE, Vallee RB. Extensive cAMP-dependent and cAMP-independent phosphorylation of microtubule-associated protein 2. J Biol Chem. 1983 Jun 25; 258(12):7883-6. PMID: 6305960.
      Citations: 26     Fields:    Translation:AnimalsCells
    80. Miller P, Walter U, Theurkauf WE, Vallee RB, De Camilli P. Frozen tissue sections as an experimental system to reveal specific binding sites for the regulatory subunit of type II cAMP-dependent protein kinase in neurons. Proc Natl Acad Sci U S A. 1982 Sep; 79(18):5562-6. PMID: 6291051.
      Citations: 22     Fields:    Translation:AnimalsCells
    81. Theurkauf WE, Vallee RB. Molecular characterization of the cAMP-dependent protein kinase bound to microtubule-associated protein 2. J Biol Chem. 1982 Mar 25; 257(6):3284-90. PMID: 6277931.
      Citations: 74     Fields:    Translation:AnimalsCells
    82. Vallee RB, DiBartolomeis MJ, Theurkauf WE. A protein kinase bound to the projection portion of MAP 2 (microtubule-associated protein 2). J Cell Biol. 1981 Sep; 90(3):568-76. PMID: 6270156.
      Citations: 55     Fields:    Translation:AnimalsCells
    Theurkauf's Networks
    Click the
    buttons for more information and interactive visualizations!
    Concepts (315)
    Co-Authors (8)
    Similar People (60)
    Same Department Expand Description
    Physical Neighbors