Header Logo

Connection

Anthony Imbalzano to Muscle, Skeletal

This is a "connection" page, showing publications Anthony Imbalzano has written about Muscle, Skeletal.
Connection Strength

1.887
  1. Cho OH, Mallappa C, Hern?ndez-Hern?ndez JM, Rivera-P?rez JA, Imbalzano AN. Contrasting roles for MyoD in organizing myogenic promoter structures during embryonic skeletal muscle development. Dev Dyn. 2015 Jan; 244(1):43-55.
    View in: PubMed
    Score: 0.328
  2. Hern?ndez-Hern?ndez JM, Mallappa C, Nasipak BT, Oesterreich S, Imbalzano AN. The Scaffold attachment factor b1 (Safb1) regulates myogenic differentiation by facilitating the transition of myogenic gene chromatin from a repressed to an activated state. Nucleic Acids Res. 2013 Jun; 41(11):5704-16.
    View in: PubMed
    Score: 0.295
  3. Dacwag CS, Bedford MT, Sif S, Imbalzano AN. Distinct protein arginine methyltransferases promote ATP-dependent chromatin remodeling function at different stages of skeletal muscle differentiation. Mol Cell Biol. 2009 Apr; 29(7):1909-21.
    View in: PubMed
    Score: 0.220
  4. Ohkawa Y, Marfella CG, Imbalzano AN. Skeletal muscle specification by myogenin and Mef2D via the SWI/SNF ATPase Brg1. EMBO J. 2006 Feb 08; 25(3):490-501.
    View in: PubMed
    Score: 0.178
  5. Roy K, de la Serna IL, Imbalzano AN. The myogenic basic helix-loop-helix family of transcription factors shows similar requirements for SWI/SNF chromatin remodeling enzymes during muscle differentiation in culture. J Biol Chem. 2002 Sep 13; 277(37):33818-24.
    View in: PubMed
    Score: 0.140
  6. de la Serna IL, Roy K, Carlson KA, Imbalzano AN. MyoD can induce cell cycle arrest but not muscle differentiation in the presence of dominant negative SWI/SNF chromatin remodeling enzymes. J Biol Chem. 2001 Nov 02; 276(44):41486-91.
    View in: PubMed
    Score: 0.131
  7. Sharma T, Robinson DCL, Witwicka H, Dilworth FJ, Imbalzano AN. The Bromodomains of the mammalian SWI/SNF (mSWI/SNF) ATPases Brahma (BRM) and Brahma Related Gene 1 (BRG1) promote chromatin interaction and are critical for skeletal muscle differentiation. Nucleic Acids Res. 2021 08 20; 49(14):8060-8077.
    View in: PubMed
    Score: 0.131
  8. Harada A, Ohkawa Y, Imbalzano AN. Temporal regulation of chromatin during myoblast differentiation. Semin Cell Dev Biol. 2017 12; 72:77-86.
    View in: PubMed
    Score: 0.101
  9. Nasipak BT, Padilla-Benavides T, Green KM, Leszyk JD, Mao W, Konda S, Sif S, Shaffer SA, Ohkawa Y, Imbalzano AN. Opposing calcium-dependent signalling pathways control skeletal muscle differentiation by regulating a chromatin remodelling enzyme. Nat Commun. 2015 Jun 17; 6:7441.
    View in: PubMed
    Score: 0.086
  10. Harada A, Mallappa C, Okada S, Butler JT, Baker SP, Lawrence JB, Ohkawa Y, Imbalzano AN. Spatial re-organization of myogenic regulatory sequences temporally controls gene expression. Nucleic Acids Res. 2015 Feb 27; 43(4):2008-21.
    View in: PubMed
    Score: 0.083
  11. Mallappa C, Hu YJ, Shamulailatpam P, Tae S, Sif S, Imbalzano AN. The expression of myogenic microRNAs indirectly requires protein arginine methyltransferase (Prmt)5 but directly requires Prmt4. Nucleic Acids Res. 2011 Mar; 39(4):1243-55.
    View in: PubMed
    Score: 0.062
  12. Ohkawa Y, Yoshimura S, Higashi C, Marfella CG, Dacwag CS, Tachibana T, Imbalzano AN. Myogenin and the SWI/SNF ATPase Brg1 maintain myogenic gene expression at different stages of skeletal myogenesis. J Biol Chem. 2007 Mar 02; 282(9):6564-70.
    View in: PubMed
    Score: 0.048
  13. Dacwag CS, Ohkawa Y, Pal S, Sif S, Imbalzano AN. The protein arginine methyltransferase Prmt5 is required for myogenesis because it facilitates ATP-dependent chromatin remodeling. Mol Cell Biol. 2007 Jan; 27(1):384-94.
    View in: PubMed
    Score: 0.047
  14. Kim KH, Jia Z, Snyder M, Chen J, Qiu J, Oprescu SN, Chen X, Syed SA, Yue F, Roseguini BT, Imbalzano AN, Hu C, Kuang S. PRMT5 links lipid metabolism to contractile function of skeletal muscles. EMBO Rep. 2023 08 03; 24(8):e57306.
    View in: PubMed
    Score: 0.037
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.