Sign in to edit your profile (add interests, mentoring, photo, etc.)
    Keywords
    Last Name
    Institution

    Joel Richter PhD

    TitleProfessor
    InstitutionUniversity of Massachusetts Medical School
    DepartmentProgram in Molecular Medicine
    AddressUniversity of Massachusetts Medical School
    373 Plantation Street, Two Biotech, Suite 204
    Worcester MA 01605
    Phone508-856-8615
      Other Positions
      InstitutionUMMS - School of Medicine
      DepartmentRNA Therapeutics Institute

      InstitutionUMMS - Graduate School of Biomedical Sciences
      DepartmentBiochemistry and Molecular Pharmacology

      InstitutionUMMS - Graduate School of Biomedical Sciences
      DepartmentInterdisciplinary Graduate Program

      InstitutionUMMS - Graduate School of Biomedical Sciences
      DepartmentMD/PhD Program

      InstitutionUMMS - Graduate School of Biomedical Sciences
      DepartmentNeuroscience

        Overview 
        Narrative

        Joel D. Richter, Ph.D.

        Professor of Molecular Medicine

        Arthur F. Koskinas Professor of Neuroscience

        Program Director, Center for Collaborative Research in Fragile X

         

        What we do...

        We study the molecular biology of mRNA translational control by cytoplasmic polyadenylation and how this process regulates neuronal synaptic plasticity, learning, and memory.  We investigate how neurologic diseases such as Fragile X and other autism spectrum disorders (ASDs) are regulated at the translational level.           

        Translational control by 3’ end formation

        Many inactive mRNAs have short poly(A) tails and only when the tails are elongated does translation ensue. A key factor that regulates polyadenylation-induced translation is the RNA binding protein CPEB (Cytoplasmic Polyadenylation Element Binding Protein). CPEB binds specific 3’UTR cis elements in mRNAs and recruits unusual poly(A) polymerases and translation factors that extend poly(A) tails in the cytoplasm and promote translation.

        Synaptic plasticity and learning and memory

        CPEB and the cytoplasmic polyadenylation complex reside at postsynaptic sites of neurons in the mammalian central nervous system. In dendrites, this complex controls local mRNA polyadenylation-induced translation in response to synaptic stimulation. Synaptic plasticity, the ability of synapses to undergo long-lasting biochemical and morphological changes in response to stimulation, forms the underlying basis of learning and memory. CPEB knockout mice are defective for synaptic plasticity and hippocampal-dependent memory formation. Hippocampal neurons depleted of other components of the cytoplasmic polyadenylation complex with lentivirus-based shRNAs also display defects in synaptic plasticity, indicating that polyadenylation-induced translation forms an essential mechanism to control translation and higher cognitive function.

        Neurons derived from CPEB knockout mice have alterations in metabolism in that ATP production by mitochondria is compromised. This deficit in ATP reduces dendrite arborization and is observed in both neurons cultured in vitro and neurons expressing an shRNA for CPEB in vivo.

        Oligo (dT) fluorescent in situ hybridization (FISH) of a cultured hippocampal neuron showing an increase in dendrite polyadenylation in response to synaptic stimulation. 

        Neurologic disease

        The Fragile X Syndrome (FXS) is the most common heritable form of mental retardation and the most common monogenic cause of autism. FXS results from a CGG expansion in and transcriptional silencing of the FMR1 gene. FMR1 encodes FMRP, an RNA binding protein that normally represses translation in the brain. In the absence of FMRP, aberrantly high translation likely causes FXS in both humans and a mouse model. Restoration of normal translation occurs in FMRP/CPEB double knockout mice. Moreover, rescue of synapse function and learning and memory also occurs in FMRP/CPEB double knockout mice, suggesting that CPEB might be a novel therapeutic to reverse FXS.  Rescue of FXS in double knockout mice may involve altered rates of ribosome translocation on mRNA (i.e., polypeptide elongation).  Deciphering which mRNAs are loaded with ribosomes that travel at different rates is daunting, but whole genome ribosome profiling and RNA-seq may shed light on this process.

         

         Aberrant nest building in Fmr1 knockout mice (compare to wild type) is rescued in Fmr1/CPEB double knockout mice.

         

        Ribosome profiling and RNA-seq of shank1 mRNA from mouse brain.

         

        Elevated ribosome translocation speed in in Fmr1 knockout mouse brain (compared to WT) is rescued to normal levels in the Fmr1/CPEB double knockout brain.  Ribosome translocation speed was measured in brain lysates derived from wild type, Fmr1 KO, CPEB KO, and Fmr1/CPEB double KO mice supplemented with 35S-methionine/cysteine and hippuristanol, which inhibits initiation.

        Reduced axon branching in the phrenic nerve of a CPEB4 gene trap mouse (CPEB4GT/GT) compared to wild type (CPEB4+/+).  Data from embryonic day 14.5 and 18.5 are shown.

         

         

         



        Rotation Projects

        Many rotation projects are available so please inquire.



        Bibliographic 
        selected publications
        List All   |   Timeline
        1. Shin J, Salameh JS, Richter JD. Impaired neurodevelopment by the low complexity domain of CPEB4 reveals a convergent pathway with neurodegeneration. Sci Rep. 2016; 6:29395.
          View in: PubMed
        2. Richter JD, Coller J. Pausing on Polyribosomes: Make Way for Elongation in Translational Control. Cell. 2015 Oct 8; 163(2):292-300.
          View in: PubMed
        3. Nagaoka K, Fujii K, Zhang H, Usuda K, Watanabe G, Ivshina M, Richter JD. CPEB1 mediates epithelial-to-mesenchyme transition and breast cancer metastasis. Oncogene. 2016 Jun 2; 35(22):2893-901.
          View in: PubMed
        4. Richter JD, Bassell GJ, Klann E. Dysregulation and restoration of translational homeostasis in fragile X syndrome. Nat Rev Neurosci. 2015 Oct; 16(10):595-605.
          View in: PubMed
        5. Richter JD. RNA and the synapse. RNA. 2015 Apr; 21(4):716-7.
          View in: PubMed
        6. Ivshina M, Alexandrov IM, Vertii A, Doxsey S, Richter JD. CPEB regulation of TAK1 synthesis mediates cytokine production and the inflammatory immune response. Mol Cell Biol. 2015 Feb; 35(3):610-8.
          View in: PubMed
        7. Ivshina M, Lasko P, Richter JD. Cytoplasmic polyadenylation element binding proteins in development, health, and disease. Annu Rev Cell Dev Biol. 2014; 30:393-415.
          View in: PubMed
        8. Udagawa T, Farny NG, Jakovcevski M, Kaphzan H, Alarcon JM, Anilkumar S, Ivshina M, Hurt JA, Nagaoka K, Nalavadi VC, Lorenz LJ, Bassell GJ, Akbarian S, Chattarji S, Klann E, Richter JD. Genetic and acute CPEB1 depletion ameliorate fragile X pathophysiology. Nat Med. 2013 Nov; 19(11):1473-7.
          View in: PubMed
        9. Swanger SA, He YA, Richter JD, Bassell GJ. Dendritic GluN2A synthesis mediates activity-induced NMDA receptor insertion. J Neurosci. 2013 May 15; 33(20):8898-908.
          View in: PubMed
        10. D'Ambrogio A, Nagaoka K, Richter JD. Translational control of cell growth and malignancy by the CPEBs. Nat Rev Cancer. 2013 Apr; 13(4):283-90.
          View in: PubMed
        11. Oruganty-Das A, Ng T, Udagawa T, Goh EL, Richter JD. Translational control of mitochondrial energy production mediates neuron morphogenesis. Cell Metab. 2012 Dec 5; 16(6):789-800.
          View in: PubMed
        12. D'Ambrogio A, Gu W, Udagawa T, Mello CC, Richter JD. Specific miRNA stabilization by Gld2-catalyzed monoadenylation. Cell Rep. 2012 Dec 27; 2(6):1537-45.
          View in: PubMed
        13. Nechama M, Lin CL, Richter JD. An unusual two-step control of CPEB destruction by Pin1. Mol Cell Biol. 2013 Jan; 33(1):48-58.
          View in: PubMed
        14. Darnell JC, Richter JD. Cytoplasmic RNA-binding proteins and the control of complex brain function. Cold Spring Harb Perspect Biol. 2012 Aug; 4(8):a012344.
          View in: PubMed
        15. Udagawa T, Swanger SA, Takeuchi K, Kim JH, Nalavadi V, Shin J, Lorenz LJ, Zukin RS, Bassell GJ, Richter JD. Bidirectional control of mRNA translation and synaptic plasticity by the cytoplasmic polyadenylation complex. Mol Cell. 2012 Jul 27; 47(2):253-66.
          View in: PubMed
        16. Lin CL, Huang YT, Richter JD. Transient CPEB dimerization and translational control. RNA. 2012 May; 18(5):1050-61.
          View in: PubMed
        17. Nagaoka K, Udagawa T, Richter JD. CPEB-mediated ZO-1 mRNA localization is required for epithelial tight-junction assembly and cell polarity. Nat Commun. 2012; 3:675.
          View in: PubMed
        18. Alexandrov IM, Ivshina M, Jung DY, Friedline R, Ko HJ, Xu M, O'Sullivan-Murphy B, Bortell R, Huang YT, Urano F, Kim JK, Richter JD. Cytoplasmic polyadenylation element binding protein deficiency stimulates PTEN and Stat3 mRNA translation and induces hepatic insulin resistance. PLoS Genet. 2012 Jan; 8(1):e1002457.
          View in: PubMed
        19. Liu-Yesucevitz L, Bassell GJ, Gitler AD, Hart AC, Klann E, Richter JD, Warren ST, Wolozin B. Local RNA translation at the synapse and in disease. J Neurosci. 2011 Nov 9; 31(45):16086-93.
          View in: PubMed
        20. Richter JD, Lasko P. Translational control in oocyte development. Cold Spring Harb Perspect Biol. 2011 Sep; 3(9):a002758.
          View in: PubMed
        21. Darnell JC, Van Driesche SJ, Zhang C, Hung KY, Mele A, Fraser CE, Stone EF, Chen C, Fak JJ, Chi SW, Licatalosi DD, Richter JD, Darnell RB. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell. 2011 Jul 22; 146(2):247-61.
          View in: PubMed
        22. Groppo R, Richter JD. CPEB control of NF-kappaB nuclear localization and interleukin-6 production mediates cellular senescence. Mol Cell Biol. 2011 Jul; 31(13):2707-14.
          View in: PubMed
        23. Burns DM, D'Ambrogio A, Nottrott S, Richter JD. CPEB and two poly(A) polymerases control miR-122 stability and p53 mRNA translation. Nature. 2011 May 5; 473(7345):105-8.
          View in: PubMed
        24. Richter JD. Translational control of synaptic plasticity. Biochem Soc Trans. 2010 Dec; 38(6):1527-30.
          View in: PubMed
        25. Kan MC, Oruganty-Das A, Cooper-Morgan A, Jin G, Swanger SA, Bassell GJ, Florman H, van Leyen K, Richter JD. CPEB4 is a cell survival protein retained in the nucleus upon ischemia or endoplasmic reticulum calcium depletion. Mol Cell Biol. 2010 Dec; 30(24):5658-71.
          View in: PubMed
        26. Lin CL, Evans V, Shen S, Xing Y, Richter JD. The nuclear experience of CPEB: implications for RNA processing and translational control. RNA. 2010 Feb; 16(2):338-48.
          View in: PubMed
        27. Cao Q, Padmanabhan K, Richter JD. Pumilio 2 controls translation by competing with eIF4E for 7-methyl guanosine cap recognition. RNA. 2010 Jan; 16(1):221-7.
          View in: PubMed
        28. Costa-Mattioli M, Sonenberg N, Richter JD. Translational regulatory mechanisms in synaptic plasticity and memory storage. Prog Mol Biol Transl Sci. 2009; 90:293-311.
          View in: PubMed
        29. Zukin RS, Richter JD, Bagni C. Signals, synapses, and synthesis: how new proteins control plasticity. Front Neural Circuits. 2009; 3:14.
          View in: PubMed
        30. Groppo R, Richter JD. Translational control from head to tail. Curr Opin Cell Biol. 2009 Jun; 21(3):444-51.
          View in: PubMed
        31. Lin AC, Tan CL, Lin CL, Strochlic L, Huang YS, Richter JD, Holt CE. Cytoplasmic polyadenylation and cytoplasmic polyadenylation element-dependent mRNA regulation are involved in Xenopus retinal axon development. Neural Dev. 2009; 4:8.
          View in: PubMed
        32. Richter JD, Klann E. Making synaptic plasticity and memory last: mechanisms of translational regulation. Genes Dev. 2009 Jan 1; 23(1):1-11.
          View in: PubMed
        33. Burns DM, Richter JD. CPEB regulation of human cellular senescence, energy metabolism, and p53 mRNA translation. Genes Dev. 2008 Dec 15; 22(24):3449-60.
          View in: PubMed
        34. Zearfoss NR, Alarcon JM, Trifilieff P, Kandel E, Richter JD. A molecular circuit composed of CPEB-1 and c-Jun controls growth hormone-mediated synaptic plasticity in the mouse hippocampus. J Neurosci. 2008 Aug 20; 28(34):8502-9.
          View in: PubMed
        35. Richter JD. Think you know how miRNAs work? Think again. Nat Struct Mol Biol. 2008 Apr; 15(4):334-6.
          View in: PubMed
        36. Richter JD. Breaking the code of polyadenylation-induced translation. Cell. 2008 Feb 8; 132(3):335-7.
          View in: PubMed
        37. Kim JH, Richter JD. Measuring CPEB-mediated cytoplasmic polyadenylation-deadenylation in Xenopus laevis oocytes and egg extracts. Methods Enzymol. 2008; 448:119-38.
          View in: PubMed
        38. Kim JH, Richter JD. RINGO/cdk1 and CPEB mediate poly(A) tail stabilization and translational regulation by ePAB. Genes Dev. 2007 Oct 15; 21(20):2571-9.
          View in: PubMed
        39. Richter JD. CPEB: a life in translation. Trends Biochem Sci. 2007 Jun; 32(6):279-85.
          View in: PubMed
        40. Richter JD, Fallon JR. Synapses go nucle(ol)ar. Nat Neurosci. 2007 Apr; 10(4):399-400.
          View in: PubMed
        41. Tung JJ, Padmanabhan K, Hansen DV, Richter JD, Jackson PK. Translational unmasking of Emi2 directs cytostatic factor arrest in meiosis II. Cell Cycle. 2007 Mar 15; 6(6):725-31.
          View in: PubMed
        42. Huang YS, Richter JD. Analysis of mRNA translation in cultured hippocampal neurons. Methods Enzymol. 2007; 431:143-62.
          View in: PubMed
        43. Nottrott S, Simard MJ, Richter JD. Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat Struct Mol Biol. 2006 Dec; 13(12):1108-14.
          View in: PubMed
        44. Cao Q, Kim JH, Richter JD. CDK1 and calcineurin regulate Maskin association with eIF4E and translational control of cell cycle progression. Nat Struct Mol Biol. 2006 Dec; 13(12):1128-34.
          View in: PubMed
        45. Kim JH, Richter JD. Opposing polymerase-deadenylase activities regulate cytoplasmic polyadenylation. Mol Cell. 2006 Oct 20; 24(2):173-83.
          View in: PubMed
        46. Racki WJ, Richter JD. CPEB controls oocyte growth and follicle development in the mouse. Development. 2006 Nov; 133(22):4527-37.
          View in: PubMed
        47. Huang YS, Kan MC, Lin CL, Richter JD. CPEB3 and CPEB4 in neurons: analysis of RNA-binding specificity and translational control of AMPA receptor GluR2 mRNA. EMBO J. 2006 Oct 18; 25(20):4865-76.
          View in: PubMed
        48. Groisman I, Ivshina M, Marin V, Kennedy NJ, Davis RJ, Richter JD. Control of cellular senescence by CPEB. Genes Dev. 2006 Oct 1; 20(19):2701-12.
          View in: PubMed
        49. Zeissig S, Bürgel N, Günzel D, Richter J, Mankertz J, Wahnschaffe U, Kroesen AJ, Zeitz M, Fromm M, Schulzke JD. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn's disease. Gut. 2007 Jan; 56(1):61-72.
          View in: PubMed
        50. Jung MY, Lorenz L, Richter JD. Translational control by neuroguidin, a eukaryotic initiation factor 4E and CPEB binding protein. Mol Cell Biol. 2006 Jun; 26(11):4277-87.
          View in: PubMed
        51. Padmanabhan K, Richter JD. Regulated Pumilio-2 binding controls RINGO/Spy mRNA translation and CPEB activation. Genes Dev. 2006 Jan 15; 20(2):199-209.
          View in: PubMed
        52. Berger-Sweeney J, Zearfoss NR, Richter JD. Reduced extinction of hippocampal-dependent memories in CPEB knockout mice. Learn Mem. 2006 Jan-Feb; 13(1):4-7.
          View in: PubMed
        53. Cao Q, Huang YS, Kan MC, Richter JD. Amyloid precursor proteins anchor CPEB to membranes and promote polyadenylation-induced translation. Mol Cell Biol. 2005 Dec; 25(24):10930-9.
          View in: PubMed
        54. Barnard DC, Cao Q, Richter JD. Differential phosphorylation controls Maskin association with eukaryotic translation initiation factor 4E and localization on the mitotic apparatus. Mol Cell Biol. 2005 Sep; 25(17):7605-15.
          View in: PubMed
        55. Du L, Richter JD. Activity-dependent polyadenylation in neurons. RNA. 2005 Sep; 11(9):1340-7.
          View in: PubMed
        56. Richter JD, Sonenberg N. Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature. 2005 Feb 3; 433(7025):477-80.
          View in: PubMed
        57. Barnard DC, Ryan K, Manley JL, Richter JD. Symplekin and xGLD-2 are required for CPEB-mediated cytoplasmic polyadenylation. Cell. 2004 Nov 24; 119(5):641-51.
          View in: PubMed
        58. Richter JD. RNA transport (partly) revealed! Neuron. 2004 Aug 19; 43(4):442-3.
          View in: PubMed
        59. Huang YS, Richter JD. Regulation of local mRNA translation. Curr Opin Cell Biol. 2004 Jun; 16(3):308-13.
          View in: PubMed
        60. Alarcon JM, Hodgman R, Theis M, Huang YS, Kandel ER, Richter JD. Selective modulation of some forms of schaffer collateral-CA1 synaptic plasticity in mice with a disruption of the CPEB-1 gene. Learn Mem. 2004 May-Jun; 11(3):318-27.
          View in: PubMed
        61. Sarkissian M, Mendez R, Richter JD. Progesterone and insulin stimulation of CPEB-dependent polyadenylation is regulated by Aurora A and glycogen synthase kinase-3. Genes Dev. 2004 Jan 1; 18(1):48-61.
          View in: PubMed
        62. Tay J, Hodgman R, Sarkissian M, Richter JD. Regulated CPEB phosphorylation during meiotic progression suggests a mechanism for temporal control of maternal mRNA translation. Genes Dev. 2003 Jun 15; 17(12):1457-62.
          View in: PubMed
        63. Huang YS, Carson JH, Barbarese E, Richter JD. Facilitation of dendritic mRNA transport by CPEB. Genes Dev. 2003 Mar 1; 17(5):638-53.
          View in: PubMed
        64. Cao Q, Richter JD. Dissolution of the maskin-eIF4E complex by cytoplasmic polyadenylation and poly(A)-binding protein controls cyclin B1 mRNA translation and oocyte maturation. EMBO J. 2002 Jul 15; 21(14):3852-62.
          View in: PubMed
        65. Richter JD, Lorenz LJ. Selective translation of mRNAs at synapses. Curr Opin Neurobiol. 2002 Jun; 12(3):300-4.
          View in: PubMed
        66. Groisman I, Jung MY, Sarkissian M, Cao Q, Richter JD. Translational control of the embryonic cell cycle. Cell. 2002 May 17; 109(4):473-83.
          View in: PubMed
        67. Huang YS, Jung MY, Sarkissian M, Richter JD. N-methyl-D-aspartate receptor signaling results in Aurora kinase-catalyzed CPEB phosphorylation and alpha CaMKII mRNA polyadenylation at synapses. EMBO J. 2002 May 1; 21(9):2139-48.
          View in: PubMed
        68. Mendez R, Barnard D, Richter JD. Differential mRNA translation and meiotic progression require Cdc2-mediated CPEB destruction. EMBO J. 2002 Apr 2; 21(7):1833-44.
          View in: PubMed
        69. Cattaruzza M, Berger MM, Ochs M, Fayyazi A, Füzesi L, Richter J, Hecker M. Deformation-induced endothelin B receptor-mediated smooth muscle cell apoptosis is matrix-dependent. Cell Death Differ. 2002 Feb; 9(2):219-26.
          View in: PubMed
        70. Tay J, Richter JD. Germ cell differentiation and synaptonemal complex formation are disrupted in CPEB knockout mice. Dev Cell. 2001 Aug; 1(2):201-13.
          View in: PubMed
        71. Richter JD, Theurkauf WE. Development. The message is in the translation. Science. 2001 Jul 6; 293(5527):60-2.
          View in: PubMed
        72. Mendez R, Richter JD. Translational control by CPEB: a means to the end. Nat Rev Mol Cell Biol. 2001 Jul; 2(7):521-9.
          View in: PubMed
        73. Hodgman R, Tay J, Mendez R, Richter JD. CPEB phosphorylation and cytoplasmic polyadenylation are catalyzed by the kinase IAK1/Eg2 in maturing mouse oocytes. Development. 2001 Jul; 128(14):2815-22.
          View in: PubMed
        74. Richter JD. Think globally, translate locally: what mitotic spindles and neuronal synapses have in common. Proc Natl Acad Sci U S A. 2001 Jun 19; 98(13):7069-71.
          View in: PubMed
        75. Groisman I, Huang YS, Mendez R, Cao Q, Richter JD. Translational control of embryonic cell division by CPEB and maskin. Cold Spring Harb Symp Quant Biol. 2001; 66:345-51.
          View in: PubMed
        76. de Moor CH, Richter JD. Translational control in vertebrate development. Int Rev Cytol. 2001; 203:567-608.
          View in: PubMed
        77. Mendez R, Murthy KG, Ryan K, Manley JL, Richter JD. Phosphorylation of CPEB by Eg2 mediates the recruitment of CPSF into an active cytoplasmic polyadenylation complex. Mol Cell. 2000 Nov; 6(5):1253-9.
          View in: PubMed
        78. Groisman I, Huang YS, Mendez R, Cao Q, Theurkauf W, Richter JD. CPEB, maskin, and cyclin B1 mRNA at the mitotic apparatus: implications for local translational control of cell division. Cell. 2000 Oct 27; 103(3):435-47.
          View in: PubMed
        79. Tay J, Hodgman R, Richter JD. The control of cyclin B1 mRNA translation during mouse oocyte maturation. Dev Biol. 2000 May 1; 221(1):1-9.
          View in: PubMed
        80. Mendez R, Hake LE, Andresson T, Littlepage LE, Ruderman JV, Richter JD. Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos mRNA. Nature. 2000 Mar 16; 404(6775):302-7.
          View in: PubMed
        81. Stebbins-Boaz B, Cao Q, de Moor CH, Mendez R, Richter JD. Maskin is a CPEB-associated factor that transiently interacts with elF-4E. Mol Cell. 1999 Dec; 4(6):1017-27.
          View in: PubMed
        82. Richter JD. Cytoplasmic polyadenylation in development and beyond. Microbiol Mol Biol Rev. 1999 Jun; 63(2):446-56.
          View in: PubMed
        83. de Moor CH, Richter JD. Cytoplasmic polyadenylation elements mediate masking and unmasking of cyclin B1 mRNA. EMBO J. 1999 Apr 15; 18(8):2294-303.
          View in: PubMed
        84. Walker J, Minshall N, Hake L, Richter J, Standart N. The clam 3' UTR masking element-binding protein p82 is a member of the CPEB family. RNA. 1999 Jan; 5(1):14-26.
          View in: PubMed
        85. Wu L, Wells D, Tay J, Mendis D, Abbott MA, Barnitt A, Quinlan E, Heynen A, Fallon JR, Richter JD. CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of alpha-CaMKII mRNA at synapses. Neuron. 1998 Nov; 21(5):1129-39.
          View in: PubMed
        86. Kuge H, Brownlee GG, Gershon PD, Richter JD. Cap ribose methylation of c-mos mRNA stimulates translation and oocyte maturation in Xenopus laevis. Nucleic Acids Res. 1998 Jul 1; 26(13):3208-14.
          View in: PubMed
        87. Wu L, Good PJ, Richter JD. The 36-kilodalton embryonic-type cytoplasmic polyadenylation element-binding protein in Xenopus laevis is ElrA, a member of the ELAV family of RNA-binding proteins. Mol Cell Biol. 1997 Nov; 17(11):6402-9.
          View in: PubMed
        88. de Moor CH, Richter JD. The Mos pathway regulates cytoplasmic polyadenylation in Xenopus oocytes. Mol Cell Biol. 1997 Nov; 17(11):6419-26.
          View in: PubMed
        For assistance with using Profiles, please refer to the online tutorials or contact UMMS Help Desk or call 508-856-8643.
        Joel's Networks
        Click the "See All" links for more information and interactive visualizations!
        Concepts
        _
        Co-Authors
        _
        Similar People
        _
        Same Department
        Physical Neighbors
        _

        This is an official Page/Publication of the University of Massachusetts Worcester Campus
        Office of the Vice Provost for Research, 55 Lake Ave North, Worcester, Massachusetts 01655
        Questions or Comments? Email: publicaffairs@umassmed.edu Phone: 508-856-1572