Loading...
Header Logo
Keywords
Last Name
Institution

Andrei A Korostelev PhD

TitleAssociate Professor
InstitutionUniversity of Massachusetts Medical School
DepartmentRNA Therapeutics Institute
AddressUniversity of Massachusetts Medical School
55 Lake Avenue North
Worcester MA 01655
Phone508-856-2353
vCardDownload vCard
    Other Positions
    InstitutionUMMS - School of Medicine
    DepartmentBiochemistry and Molecular Pharmacology

    InstitutionUMMS - School of Medicine
    DepartmentRNA Therapeutics Institute

    InstitutionUMMS - Graduate School of Biomedical Sciences
    DepartmentBiochemistry and Molecular Pharmacology

    InstitutionUMMS - Graduate School of Biomedical Sciences
    DepartmentBioinformatics and Computational Biology

    InstitutionUMMS - Graduate School of Biomedical Sciences
    DepartmentInterdisciplinary Graduate Program


    Collapse Biography 
    Collapse education and training
    Moscow State University, Moscow, , Russian FederationBSChemistry
    Moscow State University, Moscow, , Russian FederationMSChemistry
    Florida State University, Gainesville, FL, United StatesPHDChemistry & Biochemistry
    Collapse awards and honors
    1994 - 1995Soros Academic Fellowship, Moscow State University
    1996 - 1997I.V. Berezin Young Scientist Award, Moscow State University
    2010The RNA Society / Scaringe Young Scientist Award, runner-up, RNA Society
    2011Worcester Science Foundation Award
    2012Session Chair, RiboClub-2012, Sherbrooke, Canada

    Collapse Overview 
    Collapse overview

    Structure and Function of the Ribosome

    Visit Korostelev Lab Web Page

    Dr.  Andrei Korostelev, Ph.D.

    Ribosomes, the ancient and universal cellular machines, are responsible for decoding genetic information and synthesizing proteins in all living organisms. A eubacterial ribosome has a molecular weight of approximately 2.5 MDa and consists of about 55 proteins and 3 large RNA molecules. So far, the ribosome is the largest asymmetric macromolecule amenable to crystallographic analyses.

    The multi-step process of translation is not fully understood: only recently, structural details of some steps of translation started to emerge.

    In our lab, we aim at a full structural description of the highly dynamic process of translation. We use X-ray crystallography to obtain snapshots of different functional states of the ribosome and biochemistry to test the hypotheses concerning the mechanisms and dynamics of the ribosome and translation factors. These studies are designed not only to expand our fundamental knowledge of this molecular machine but also to aid in the development of new drugs that target ribosomes.

    Translation termination on the 70S ribosome

    Translation termination on the 70S ribosome.Release factor RF2 (yellow) is bound to the ribosome in response to a stop codon encoded in a messenger RNA (green) located on the small 30S ribosomal subunit (cyan and blue). RF2 is positioned to catalyze the hydrolysis of a peptidyl-tRNA (green and orange) on the large 50S subunit (grey, purple and magenta). An E-site-bound tRNA is in red.

    This structural model was rendered in Pymol and is based on the X-ray structures of 70S translation termination complexes (Korostelev et al., 2008; Laurberg et al., 2008) and a 70S-tRNA complex (Jenner et al., 2010).



    Collapse Rotation Projects

    Rotation projects

    We apply X-ray crystallography and biochemical methods to understand the mechanisms employed by the ribosome. Potential rotation projects are 1) to understand various aspects of translation via mutagenesis/biochemical assays, 2) to crystallize and work on determining the structures of translation factors and functional ribosome complexes, and 3) to improve computational methods used to determine crystal structures of macromolecules.

    Feel free to contact the lab for a more detailed discussion.




    Collapse Bibliographic 
    Collapse selected publications
    Publications listed below are automatically derived from MEDLINE/PubMed and other sources, which might result in incorrect or missing publications. Faculty can login to make corrections and additions.
    List All   |   Timeline
    1. Loveland AB, Demo G, Grigorieff N, Korostelev AA. Ensemble cryo-EM elucidates the mechanism of translation fidelity. Nature. 2017 Jun 01; 546(7656):113-117. PMID: 28538735.
      View in: PubMed
    2. Demo G, Svidritskiy E, Madireddy R, Diaz-Avalos R, Grant T, Grigorieff N, Sousa D, Korostelev AA. Mechanism of ribosome rescue by ArfA and RF2. Elife. 2017 Mar 16; 6. PMID: 28300532.
      View in: PubMed
    3. Loveland AB, Bah E, Madireddy R, Zhang Y, Brilot AF, Grigorieff N, Korostelev AA. Ribosomeā€¢RelA structures reveal the mechanism of stringent response activation. Elife. 2016 Jul 19; 5. PMID: 27434674.
      View in: PubMed
    4. Abeyrathne PD, Koh CS, Grant T, Grigorieff N, Korostelev AA. Ensemble cryo-EM uncovers inchworm-like translocation of a viral IRES through the ribosome. Elife. 2016 May 09; 5. PMID: 27159452.
      View in: PubMed
    5. Svidritskiy E, Madireddy R, Korostelev AA. Structural Basis for Translation Termination on a Pseudouridylated Stop Codon. J Mol Biol. 2016 May 22; 428(10 Pt B):2228-36. PMID: 27107638.
      View in: PubMed
    6. Tek A, Korostelev AA, Flores SC. MMB-GUI: a fast morphing method demonstrates a possible ribosomal tRNA translocation trajectory. Nucleic Acids Res. 2016 Jan 8; 44(1):95-105. PMID: 26673695.
      View in: PubMed
    7. Svidritskiy E, Korostelev AA. Ribosome Structure Reveals Preservation of Active Sites in the Presence of a P-Site Wobble Mismatch. Structure. 2015 Nov 3; 23(11):2155-61. PMID: 26412335.
      View in: PubMed
    8. Colussi TM, Costantino DA, Zhu J, Donohue JP, Korostelev AA, Jaafar ZA, Plank TD, Noller HF, Kieft JS. Initiation of translation in bacteria by a structured eukaryotic IRES RNA. Nature. 2015 Mar 5; 519(7541):110-3. PMID: 25652826.
      View in: PubMed
    9. Korostelev AA. A deeper look into translation initiation. Cell. 2014 Oct 23; 159(3):475-6. PMID: 25417100.
      View in: PubMed
    10. Svidritskiy E, Brilot AF, Koh CS, Grigorieff N, Korostelev AA. Structures of yeast 80S ribosome-tRNA complexes in the rotated and nonrotated conformations. Structure. 2014 Aug 5; 22(8):1210-8. PMID: 25043550.
      View in: PubMed
    11. Koh CS, Brilot AF, Grigorieff N, Korostelev AA. Taura syndrome virus IRES initiates translation by binding its tRNA-mRNA-like structural element in the ribosomal decoding center. Proc Natl Acad Sci U S A. 2014 Jun 24; 111(25):9139-44. PMID: 24927574.
      View in: PubMed
    12. Brilot AF, Korostelev AA, Ermolenko DN, Grigorieff N. Structure of the ribosome with elongation factor G trapped in the pretranslocation state. Proc Natl Acad Sci U S A. 2013 Dec 24; 110(52):20994-9. PMID: 24324137.
      View in: PubMed
    13. Svidritskiy E, Ling C, Ermolenko DN, Korostelev AA. Blasticidin S inhibits translation by trapping deformed tRNA on the ribosome. Proc Natl Acad Sci U S A. 2013 Jul 23; 110(30):12283-8. PMID: 23824292.
      View in: PubMed
    14. Santos N, Zhu J, Donohue JP, Korostelev AA, Noller HF. Crystal structure of the 70S ribosome bound with the Q253P mutant form of release factor RF2. Structure. 2013 Jul 2; 21(7):1258-63. PMID: 23769667.
      View in: PubMed
    15. Zhou J, Korostelev A, Lancaster L, Noller HF. Crystal structures of 70S ribosomes bound to release factors RF1, RF2 and RF3. Curr Opin Struct Biol. 2012 Dec; 22(6):733-42. PMID: 22999888.
      View in: PubMed
    16. Korennykh AV, Egea PF, Korostelev AA, Finer-Moore J, Stroud RM, Zhang C, Shokat KM, Walter P. Cofactor-mediated conformational control in the bifunctional kinase/RNase Ire1. BMC Biol. 2011 Jul 06; 9:48. PMID: 21729334.
      View in: PubMed
    17. Korennykh AV, Korostelev AA, Egea PF, Finer-Moore J, Stroud RM, Zhang C, Shokat KM, Walter P. Structural and functional basis for RNA cleavage by Ire1. BMC Biol. 2011 Jul 06; 9:47. PMID: 21729333.
      View in: PubMed
    18. Korostelev AA. Structural aspects of translation termination on the ribosome. RNA. 2011 Aug; 17(8):1409-21. PMID: 21700725.
      View in: PubMed
    19. Zhu J, Korostelev A, Costantino DA, Donohue JP, Noller HF, Kieft JS. Crystal structures of complexes containing domains from two viral internal ribosome entry site (IRES) RNAs bound to the 70S ribosome. Proc Natl Acad Sci U S A. 2011 Feb 1; 108(5):1839-44. PMID: 21245352.
      View in: PubMed
    20. Korostelev A, Zhu J, Asahara H, Noller HF. Recognition of the amber UAG stop codon by release factor RF1. EMBO J. 2010 Aug 4; 29(15):2577-85. PMID: 20588254.
      View in: PubMed
    21. Korostelev A, Laurberg M, Noller HF. Multistart simulated annealing refinement of the crystal structure of the 70S ribosome. Proc Natl Acad Sci U S A. 2009 Oct 27; 106(43):18195-200. PMID: 19822758.
      View in: PubMed
    22. Korennykh AV, Egea PF, Korostelev AA, Finer-Moore J, Zhang C, Shokat KM, Stroud RM, Walter P. The unfolded protein response signals through high-order assembly of Ire1. Nature. 2009 Feb 5; 457(7230):687-93. PMID: 19079236.
      View in: PubMed
    23. Korostelev A, Asahara H, Lancaster L, Laurberg M, Hirschi A, Zhu J, Trakhanov S, Scott WG, Noller HF. Crystal structure of a translation termination complex formed with release factor RF2. Proc Natl Acad Sci U S A. 2008 Dec 16; 105(50):19684-9. PMID: 19064930.
      View in: PubMed
    24. Korostelev A, Ermolenko DN, Noller HF. Structural dynamics of the ribosome. Curr Opin Chem Biol. 2008 Dec; 12(6):674-83. PMID: 18848900.
      View in: PubMed
    25. Laurberg M, Asahara H, Korostelev A, Zhu J, Trakhanov S, Noller HF. Structural basis for translation termination on the 70S ribosome. Nature. 2008 Aug 14; 454(7206):852-7. PMID: 18596689.
      View in: PubMed
    26. Korostelev A, Trakhanov S, Asahara H, Laurberg M, Lancaster L, Noller HF. Interactions and dynamics of the Shine Dalgarno helix in the 70S ribosome. Proc Natl Acad Sci U S A. 2007 Oct 23; 104(43):16840-3. PMID: 17940016.
      View in: PubMed
    27. Korostelev A, Noller HF. The ribosome in focus: new structures bring new insights. Trends Biochem Sci. 2007 Sep; 32(9):434-41. PMID: 17764954.
      View in: PubMed
    28. Korostelev A, Noller HF. Analysis of structural dynamics in the ribosome by TLS crystallographic refinement. J Mol Biol. 2007 Nov 2; 373(4):1058-70. PMID: 17897673.
      View in: PubMed
    29. Korostelev A, Trakhanov S, Laurberg M, Noller HF. Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Cell. 2006 Sep 22; 126(6):1065-77. PMID: 16962654.
      View in: PubMed
    30. Murray S, Nilsson CL, Hare JT, Emmett MR, Korostelev A, Ongley H, Marshall AG, Chapman MS. Characterization of the capsid protein glycosylation of adeno-associated virus type 2 by high-resolution mass spectrometry. J Virol. 2006 Jun; 80(12):6171-6. PMID: 16731956.
      View in: PubMed
    31. Fabiola F, Korostelev A, Chapman MS. Bias in cross-validated free R factors: mitigation of the effects of non-crystallographic symmetry. Acta Crystallogr D Biol Crystallogr. 2006 Mar; 62(Pt 3):227-38. PMID: 16510969.
      View in: PubMed
    32. Korostelev A, Fenley MO, Chapman MS. Impact of a Poisson-Boltzmann electrostatic restraint on protein structures refined at medium resolution. Acta Crystallogr D Biol Crystallogr. 2004 Oct; 60(Pt 10):1786-94. PMID: 15388925.
      View in: PubMed
    33. Gao H, Sengupta J, Valle M, Korostelev A, Eswar N, Stagg SM, Van Roey P, Agrawal RK, Harvey SC, Sali A, Chapman MS, Frank J. Study of the structural dynamics of the E coli 70S ribosome using real-space refinement. Cell. 2003 Jun 13; 113(6):789-801. PMID: 12809609.
      View in: PubMed
    34. Lima S, Hildenbrand J, Korostelev A, Hattman S, Li H. Crystal structure of an RNA helix recognized by a zinc-finger protein: an 18-bp duplex at 1.6 A resolution. RNA. 2002 Jul; 8(7):924-32. PMID: 12166647.
      View in: PubMed
    35. Fabiola F, Bertram R, Korostelev A, Chapman MS. An improved hydrogen bond potential: impact on medium resolution protein structures. Protein Sci. 2002 Jun; 11(6):1415-23. PMID: 12021440.
      View in: PubMed
    36. Korostelev A, Bertram R, Chapman MS. Simulated-annealing real-space refinement as a tool in model building. Acta Crystallogr D Biol Crystallogr. 2002 May; 58(Pt 5):761-7. PMID: 11976486.
      View in: PubMed
    For assistance with using Profiles, please refer to the online tutorials or contact UMMS Help Desk or call 508-856-8643.
    Korostelev's Networks
    Click the "See All" links for more information and interactive visualizations!
    Concepts Expand Description
    _
    Similar People Expand Description
    _
    Same Department Expand Description
    Physical Neighbors Expand Description
    _