Header Logo

Haley E Melikian PhD

TitleProfessor
InstitutionUMass Chan Medical School
DepartmentNeurobiology
AddressBrudnick Neuropsychiatric Research Institute
364 Plantation Street, LRB 726
Worcester MA 01605
vCardDownload vCard
    Other Positions
    InstitutionT.H. Chan School of Medicine
    DepartmentBiochemistry and Molecular Biotechnology

    InstitutionT.H. Chan School of Medicine
    DepartmentBrudnick Neuropsychiatric Research Institute

    InstitutionT.H. Chan School of Medicine
    DepartmentNeurobiology

    InstitutionT.H. Chan School of Medicine
    DepartmentNeuroNexus Institute

    InstitutionT.H. Chan School of Medicine
    DepartmentPsychiatry

    InstitutionMorningside Graduate School of Biomedical Sciences
    DepartmentBiochemistry and Molecular Biotechnology

    InstitutionMorningside Graduate School of Biomedical Sciences
    DepartmentInterdisciplinary Graduate Program

    InstitutionMorningside Graduate School of Biomedical Sciences
    DepartmentMD/PhD Program

    InstitutionMorningside Graduate School of Biomedical Sciences
    DepartmentNeuroscience

    InstitutionMorningside Graduate School of Biomedical Sciences
    DepartmentPostbaccalaureate Research Education Program

    InstitutionMorningside Graduate School of Biomedical Sciences
    DepartmentTranslational Science

    InstitutionUMass Chan Programs, Centers and Institutes
    DepartmentBrudnick Neuropsychiatric Research Institute


    Collapse Biography 
    Collapse education and training
    University of Massachusetts Amherst, Amherst, MA, United StatesBA
    University of Massachusetts Amherst, Amherst, MA, United StatesBSBiochemistry
    Emory University, Atlanta, GA, United StatesPHDNeuroscience
    Howard Hughes Medical Institute, Emory University, Atlanta, GAPostdoctoralGenetics/Neurobiology
    Harvard Medical School, Boston, MAPostdoctoralNeurobiology

    Collapse Overview 
    Collapse overview

    Dopamine Signaling in Neuropsychiatric Disorders and Addiction

    Dopamine (DA) signaling in the brain is requisite for a number of key behaviors, including motivation, reward, motor function, and learning. Multiple neurological and neuropsychiatric disorders exhibit aberrant DA signaling, including addiction, schizophrenia, autism spectrum disorder (ASD), Parkinson's disease, and attention-deficit/hyperactivity disorder (ADHD). Despite the association of these disorders with dopaminergic dysfunction, the molecular mechanisms and neuronal circuits involved in these processes are not well defined. In order to investigate these pressing questions, we leverage a variety of approaches that span from molecules to behavior in mouse models, including in vivo monitoring of neuronal activity and DA signaling using genetically encoded tools. We currently are pursuing multiple lines of investigation:

    Regulation of the Cocaine-Sensitive DA Transporter (DAT):  Our laboratory is interested in the circuit- and molecular-specific mechanisms that regulate DA signaling and DA-dependent behaviors. Once released, extracellular DA is temporally and spatially restricted by presynaptic DA reuptake facilitated by the DA transporter (DAT). In addition to its central role in basal synaptic transmission, DAT is the primary target for addictive psychostimulants, cocaine and amphetamine, as well as therapeutic psychoactive drugs, such as methylphenidate (Ritalin) and bupropion (Wellbutrin/Zyban).  These agents block DAT activity and thereby enhance extracellular DA levels and drive dysfunction in DA-depndent behaviors. 

    Given DAT’s importance in DAergic neurotransmission and as a psychoactive drug target, cellular mechanisms that impact DAT function are likely to have significant impact on DA signaling and neuropsychiatric disorders.  Multiple DAT coding variants have been identified in ADHD and autism patients, further supporting that altered DAT function is linked to significant behavioral consequences.  Work from our lab investigates the cellular and molecular mechanisms that regulate DAT.  Endocytic trafficking dynamically controls DAT plasma membrane availability, and a variety of cellular signaling pathways and psychostimulant drugs rapid alter DAT trafficking, surface expression and function. We have identified multiple key players that govern DAT trafficking.  Using a variety of cutting edge approaches, such as viral-mediated gene expression, gene silencing (RNAi), optogenetics and chemogenetics, we are investigating how DAT regulation impacts DA neurotransmission and DA-associated behaviors.

    Role of modulatory glutamate signaling in motor function, novelty, and reward: Glutamate is the major excitatory neurotransmitter in the brain, but also has a modulatory role by signaling through metabotropic glutamate receptors (mGluRs). Recent work from our laboratory revealed that selective expression of mGluR5 in DA neurons is required for several DA-dependent behaviors and DA signaling. However, the circuit- and mechanistic-specific underpinnings of these processes have not been elucidated. Using a novel conditional knockout model, we are leveraging several intersectional approaches to determine how DAergic mGluR5 impacts DA neuron function and DA-dependent behaviors.


    Collapse Rotation Projects

    Potential Rotation Projects


    1. Dopamine Transporter (DAT) Trafficking in Cocaine Addiction

    DAT is a membrane protein in dopamine (DA) axon teminals whose primary function is to remove released dopamine and thereby terminate synpatic transmission. Addictive psychostimulants, such as cocaine, block DAT function, which increases extracellular DA and is responsible for cocaine's addictive properties. DAT is not static at the plasma membrane, but is dynamically regulated by membrane traffficking. This project is to determine whether DAT membrane trafficking is required for cocaine addiction. Our lab has developed a novel, AAV-mediated, in vivo molecular replacement strategy, that replaces wildytpe DAT with DAT trafficking dysregulated mutants in adult mice. There are 2 possible rotation projects:

    Project 1a: Rotation students will assist in behaviorally assessing replacement mice as compared to controls, and will additionally use immumohistochemical approaches to validate mutant protein expression in dopamine neurons in situ. Students will gain experience in mouse behavior, brain dissection, preparation of brain slices,  and immunhistochemical techniques in mouse brain.

    Project 1b: Rotation students will develop a CRISPR/Cas9 guide RNA in order to perform gene editing and mutate DAT in vivo, and will test its efficacy in vitro. Students will learn guide RNA design, and mammalian tissue culture, and genomic sequencing.

     

     

    Cocaine's Synaptic Actions at the Dopamine Transporter. Synaptic models. (A) Dopamine released into the extracellular space is rapidly cleared by the dopamine transporter (purple), thereby limiting the postsynaptic dopamine signal(B) Cocaine binds to and blocks the dopamine transporter, allowing dopamine to accumulate extracellularly and enhancing the postsynaptic signal.



    2. Modulatory glutamate signaling: impact on motor function, novelty, and cocaine addiction

    Glutamate is the major excitatory neurotransmitter in the brain, but also has a modulatory role by signaling through metabotropic glutamate receptors (mGluRs). Recent work from our laboratory revealed that mGluR5 expression in DA neurons is required for DA signaling and several DA-dependent behaviors including motor learning and cocaine reward. However, the circuit- and mechanistic-specific underpinnings of these processes are unkonwn. Using a novel conditional knockout model, we are leveraging genetically encoded DA sensors to determine how DAergic mGluR5 impacts DA neuron function and DA-dependent behaviors in mice. Rotation students will learn to behaviorally assess cocaine addiction in this mouse model, and will learn immunohistochemical approaches to validate viral expression