"Myoblasts, Skeletal" is a descriptor in the National Library of Medicine's controlled vocabulary thesaurus,
MeSH (Medical Subject Headings). Descriptors are arranged in a hierarchical structure,
which enables searching at various levels of specificity.
Precursor cells destined to differentiate into skeletal myocytes (MYOCYTES, SKELETAL).
Descriptor ID |
D032448
|
MeSH Number(s) |
A11.872.620.500
|
Concept/Terms |
|
Below are MeSH descriptors whose meaning is more general than "Myoblasts, Skeletal".
Below are MeSH descriptors whose meaning is more specific than "Myoblasts, Skeletal".
This graph shows the total number of publications written about "Myoblasts, Skeletal" by people in this website by year, and whether "Myoblasts, Skeletal" was a major or minor topic of these publications.
To see the data from this visualization as text,
click here.
Year | Major Topic | Minor Topic | Total |
---|
2006 | 0 | 1 | 1 |
2007 | 0 | 1 | 1 |
2009 | 0 | 1 | 1 |
2013 | 0 | 2 | 2 |
2017 | 1 | 0 | 1 |
2021 | 0 | 1 | 1 |
To return to the timeline,
click here.
Below are the most recent publications written about "Myoblasts, Skeletal" by people in Profiles.
-
Fujimoto BA, Young M, Nakamura N, Ha H, Carter L, Pitts MW, Torres D, Noh HL, Suk S, Kim JK, Polgar N. Disrupted glucose homeostasis and skeletal-muscle-specific glucose uptake in an exocyst knockout mouse model. J Biol Chem. 2021 Jan-Jun; 296:100482.
-
Padilla-Benavides T, Nasipak BT, Paskavitz AL, Haokip DT, Schnabl JM, Nickerson JA, Imbalzano AN. Casein kinase 2-mediated phosphorylation of Brahma-related gene 1 controls myoblast proliferation and contributes to SWI/SNF complex composition. J Biol Chem. 2017 11 10; 292(45):18592-18607.
-
Henriques-Pons A, Yu Q, Rayavarapu S, Cohen TV, Ampong B, Cha HJ, Jahnke V, Van der Meulen J, Wang D, Jiang W, Kandimalla ER, Agrawal S, Spurney CF, Nagaraju K. Role of Toll-like receptors in the pathogenesis of dystrophin-deficient skeletal and heart muscle. Hum Mol Genet. 2014 May 15; 23(10):2604-17.
-
Hern?ndez-Hern?ndez JM, Mallappa C, Nasipak BT, Oesterreich S, Imbalzano AN. The Scaffold attachment factor b1 (Safb1) regulates myogenic differentiation by facilitating the transition of myogenic gene chromatin from a repressed to an activated state. Nucleic Acids Res. 2013 Jun; 41(11):5704-16.
-
Xu J, Li X, Lian JB, Ayers DC, Song J. Sustained and localized in vitro release of BMP-2/7, RANKL, and tetracycline from FlexBone, an elastomeric osteoconductive bone substitute. J Orthop Res. 2009 Oct; 27(10):1306-11.
-
Hart DO, Green MR. Targeting a TAF to make muscle. Mol Cell. 2008 Oct 24; 32(2):164-6.
-
Smith KP, Byron M, Johnson C, Xing Y, Lawrence JB. Defining early steps in mRNA transport: mutant mRNA in myotonic dystrophy type I is blocked at entry into SC-35 domains. J Cell Biol. 2007 Sep 10; 178(6):951-64.
-
Zhou H, Brockington M, Jungbluth H, Monk D, Stanier P, Sewry CA, Moore GE, Muntoni F. Epigenetic allele silencing unveils recessive RYR1 mutations in core myopathies. Am J Hum Genet. 2006 Nov; 79(5):859-68.