Smad3 Protein
"Smad3 Protein" is a descriptor in the National Library of Medicine's controlled vocabulary thesaurus,
MeSH (Medical Subject Headings). Descriptors are arranged in a hierarchical structure,
which enables searching at various levels of specificity.
A receptor-regulated smad protein that undergoes PHOSPHORYLATION by ACTIVIN RECEPTORS, TYPE I. Activated Smad3 can bind directly to DNA, and it regulates TRANSFORMING GROWTH FACTOR BETA and ACTIVIN signaling.
Descriptor ID |
D051900
|
MeSH Number(s) |
D12.644.360.024.334.500.300 D12.776.157.057.170.500.300 D12.776.260.713.500.300 D12.776.476.024.417.500.300 D12.776.744.741.875 D12.776.930.806.500.300
|
Concept/Terms |
|
Below are MeSH descriptors whose meaning is more general than "Smad3 Protein".
- Chemicals and Drugs [D]
- Amino Acids, Peptides, and Proteins [D12]
- Peptides [D12.644]
- Intracellular Signaling Peptides and Proteins [D12.644.360]
- Adaptor Proteins, Signal Transducing [D12.644.360.024]
- Smad Proteins [D12.644.360.024.334]
- Smad Proteins, Receptor-Regulated [D12.644.360.024.334.500]
- Smad3 Protein [D12.644.360.024.334.500.300]
- Proteins [D12.776]
- Carrier Proteins [D12.776.157]
- Adaptor Proteins, Signal Transducing [D12.776.157.057]
- Smad Proteins [D12.776.157.057.170]
- Smad Proteins, Receptor-Regulated [D12.776.157.057.170.500]
- Smad3 Protein [D12.776.157.057.170.500.300]
- DNA-Binding Proteins [D12.776.260]
- Smad Proteins [D12.776.260.713]
- Smad Proteins, Receptor-Regulated [D12.776.260.713.500]
- Smad3 Protein [D12.776.260.713.500.300]
- Intracellular Signaling Peptides and Proteins [D12.776.476]
- Adaptor Proteins, Signal Transducing [D12.776.476.024]
- Smad Proteins [D12.776.476.024.417]
- Smad Proteins, Receptor-Regulated [D12.776.476.024.417.500]
- Smad3 Protein [D12.776.476.024.417.500.300]
- Phosphoproteins [D12.776.744]
- Smad Proteins, Receptor-Regulated [D12.776.744.741]
- Smad3 Protein [D12.776.744.741.875]
- Transcription Factors [D12.776.930]
- Smad Proteins [D12.776.930.806]
- Smad Proteins, Receptor-Regulated [D12.776.930.806.500]
- Smad3 Protein [D12.776.930.806.500.300]
Below are MeSH descriptors whose meaning is more specific than "Smad3 Protein".
This graph shows the total number of publications written about "Smad3 Protein" by people in this website by year, and whether "Smad3 Protein" was a major or minor topic of these publications.
To see the data from this visualization as text, click here.
Year | Major Topic | Minor Topic | Total |
---|
2002 | 0 | 1 | 1 | 2003 | 0 | 1 | 1 | 2004 | 0 | 1 | 1 | 2008 | 0 | 1 | 1 | 2009 | 1 | 0 | 1 | 2012 | 1 | 0 | 1 | 2013 | 1 | 0 | 1 | 2015 | 0 | 1 | 1 |
To return to the timeline, click here.
Below are the most recent publications written about "Smad3 Protein" by people in Profiles.
-
Csak T, Bala S, Lippai D, Kodys K, Catalano D, Iracheta-Vellve A, Szabo G. MicroRNA-155 Deficiency Attenuates Liver Steatosis and Fibrosis without Reducing Inflammation in a Mouse Model of Steatohepatitis. PLoS One. 2015; 10(6):e0129251.
-
Sugimoto H, LeBleu VS, Bosukonda D, Keck P, Taduri G, Bechtel W, Okada H, Carlson W, Bey P, Rusckowski M, Tampe B, Tampe D, Kanasaki K, Zeisberg M, Kalluri R. Reply to Regarding the mechanism of action of a proposed peptide agonist of the bone morphogenetic protein receptor activin-like kinase 3. Nat Med. 2013 Jul; 19(7):810-1.
-
Kim KO, Sampson ER, Maynard RD, O'Keefe RJ, Chen D, Drissi H, Rosier RN, Hilton MJ, Zuscik MJ. Ski inhibits TGF-ß/phospho-Smad3 signaling and accelerates hypertrophic differentiation in chondrocytes. J Cell Biochem. 2012 Jun; 113(6):2156-66.
-
Sugimoto H, LeBleu VS, Bosukonda D, Keck P, Taduri G, Bechtel W, Okada H, Carlson W, Bey P, Rusckowski M, Tampe B, Tampe D, Kanasaki K, Zeisberg M, Kalluri R. Activin-like kinase 3 is important for kidney regeneration and reversal of fibrosis. Nat Med. 2012 Feb 05; 18(3):396-404.
-
Lin HM, Lee JH, Yadav H, Kamaraju AK, Liu E, Zhigang D, Vieira A, Kim SJ, Collins H, Matschinsky F, Harlan DM, Roberts AB, Rane SG. Transforming growth factor-beta/Smad3 signaling regulates insulin gene transcription and pancreatic islet beta-cell function. J Biol Chem. 2009 May 1; 284(18):12246-57.
-
Zender L, Xue W, Zuber J, Semighini CP, Krasnitz A, Ma B, Zender P, Kubicka S, Luk JM, Schirmacher P, McCombie WR, Wigler M, Hicks J, Hannon GJ, Powers S, Lowe SW. An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer. Cell. 2008 Nov 28; 135(5):852-64.
-
Wu Q, Kim KO, Sampson ER, Chen D, Awad H, O'Brien T, Puzas JE, Drissi H, Schwarz EM, O'Keefe RJ, Zuscik MJ, Rosier RN. Induction of an osteoarthritis-like phenotype and degradation of phosphorylated Smad3 by Smurf2 in transgenic mice. Arthritis Rheum. 2008 Oct; 58(10):3132-44.
-
Li TF, Chen D, Wu Q, Chen M, Sheu TJ, Schwarz EM, Drissi H, Zuscik M, O'Keefe RJ. Transforming growth factor-beta stimulates cyclin D1 expression through activation of beta-catenin signaling in chondrocytes. J Biol Chem. 2006 Jul 28; 281(30):21296-304.
-
Li TF, Darowish M, Zuscik MJ, Chen D, Schwarz EM, Rosier RN, Drissi H, O'Keefe RJ. Smad3-deficient chondrocytes have enhanced BMP signaling and accelerated differentiation. J Bone Miner Res. 2006 Jan; 21(1):4-16.
-
Chacko BM, Qin BY, Tiwari A, Shi G, Lam S, Hayward LJ, De Caestecker M, Lin K. Structural basis of heteromeric smad protein assembly in TGF-beta signaling. Mol Cell. 2004 Sep 10; 15(5):813-23.
|
People  People who have written about this concept. _
Similar Concepts
People who have written about this concept.
_
Top Journals
Top journals in which articles about this concept have been published.
|